Degradable Biomaterials for Temporary Medical Implants

Degradable biomaterials bring possibilities to fabricate medical implants that function for a determined period related to clinical events such as healing. They can be made on the basis of polymers, ceramics and metals. These metals, which are expected to corrode gradually in vivo with an appropriate host response and then dissolve completely upon fulfilling the mission to assist with tissue healing, are known as biodegradable metals. They constitute a novel class of bioactive biomaterials which supports the healing process of temporary clinical problems. Three classes of metals have been explored: magnesium-, zinc- and iron-based alloys. Three targeted applications are envisaged: orthopaedic, cardiovascular and pediatric implants. Three levels of investigations have been conducted: in vitro, in vivo and clinical trials. Discussion on standardization has been initiated since 2013 with representatives from ISO, DIN and ASTM and drafts of comprehensive standards are now under preparation. The field of biodegradable metals is exciting and witnessing more development in the future including new advanced alloys and new real breakthrough that leads to its clinical translation. This chapter starts with a discussion on biodegradable polymers to gain important lessons learned for advancing the research in biodegradable metals, the new emerging research interest in the forefront of biomaterials loaded with full of great expectations.

[1]  K. Tew,et al.  Trace elements in human physiology and pathology: zinc and metallothioneins. , 2003, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[2]  Cato T Laurencin,et al.  Biomedical Applications of Biodegradable Polymers. , 2011, Journal of polymer science. Part B, Polymer physics.

[3]  N. Huang,et al.  Biocompatibility of pure iron: In vitro assessment of degradation kinetics and cytotoxicity on endothelial cells , 2009 .

[4]  R. Simon Cyanophycin Granules from the Blue-Green Alga Anabaena cylindrica: A Reserve Material Consisting of Copolymers of Aspartic Acid and Arginine. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[5]  K. James,et al.  New Biomaterials For Tissue Engineering , 1996 .

[6]  D. Thierry,et al.  Corrosion mechanism of model zinc–magnesium alloys in atmospheric conditions , 2008 .

[7]  Diego Mantovani,et al.  Degradable metallic biomaterials: The concept, current developments and future directions , 2009 .

[8]  F. Prima,et al.  Effect of electrodeposition current density on the microstructure and the degradation of electroformed iron for degradable stents , 2011 .

[9]  Frank Witte,et al.  Degradable biomaterials based on magnesium corrosion , 2008 .

[10]  Spandan Maiti,et al.  Magnesium alloys as a biomaterial for degradable craniofacial screws. , 2014, Acta biomaterialia.

[11]  Peter Gemeiner,et al.  High‐Molar‐Mass Hyaluronan Behavior During Testing Its Radical Scavenging Capacity in Organic and Aqueous Media: Effects of the Presence of Manganese(II) Ions , 2009, Chemistry & biodiversity.

[12]  A. Arafat,et al.  Evidences of in vivo bioactivity of Fe-bioceramic composites for temporary bone implants. , 2015, Journal of biomedical materials research. Part B, Applied biomaterials.

[13]  P. Uggowitzer,et al.  Design strategy for biodegradable Fe-based alloys for medical applications. , 2010, Acta biomaterialia.

[14]  Frank Witte,et al.  In vitro and in vivo corrosion measurements of magnesium alloys. , 2006, Biomaterials.

[15]  M. Peuster,et al.  Dissolution of tungsten coils leads to device failure after transcatheter embolisation of pathologic vessels , 2001, Heart.

[16]  Guang-Ling Song,et al.  Control of biodegradation of biocompatable magnesium alloys , 2007 .

[17]  E. Willbold,et al.  Biodegradable magnesium scaffolds: Part II: peri-implant bone remodeling. , 2007, Journal of biomedical materials research. Part A.

[18]  F. Wolf,et al.  Chemistry and biochemistry of magnesium. , 2003, Molecular aspects of medicine.

[19]  Philipp Beerbaum,et al.  Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. , 2006, Biomaterials.

[20]  H. Friedrich,et al.  Magnesium Technology - Metallurgy, Design Data, Applications , 2006 .

[21]  Yan Wang,et al.  Injectable bone cement based on mineralized collagen. , 2010, Journal of biomedical materials research. Part B, Applied biomaterials.

[22]  E. Aghion,et al.  In vivo behavior of biodegradable Mg–Nd–Y–Zr–Ca alloy , 2012, Journal of Materials Science: Materials in Medicine.

[23]  W C de Bruijn,et al.  Late degradation tissue response to poly(L-lactide) bone plates and screws. , 1995, Biomaterials.

[24]  J. Lahann,et al.  Improvement of haemocompatibility of metallic stents by polymer coating , 1999, Journal of materials science. Materials in medicine.

[25]  J. Jacobs,et al.  Metal sensitivity in patients with orthopaedic implants. , 2001, The Journal of bone and joint surgery. American volume.

[26]  A. Mikos,et al.  Injectable biodegradable materials for orthopedic tissue engineering. , 2000, Biomaterials.

[27]  P. Uggowitzer,et al.  Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. , 2012, Acta biomaterialia.

[28]  Fernando B. Mainier,et al.  Characterization of prematurely failed stainless steel orthopedic implants , 2010 .

[29]  C. Laurencin,et al.  Biodegradable polymers as biomaterials , 2007 .

[30]  Federica Chiellini,et al.  Polymeric Materials for Bone and Cartilage Repair , 2010 .

[31]  T. Okuma Magnesium and bone strength. , 2001, Nutrition.

[32]  Diego Mantovani,et al.  Iron–manganese: New class of metallic degradable biomaterials prepared by powder metallurgy , 2008 .

[33]  Ron Waksman,et al.  Short-term effects of biocorrodible iron stents in porcine coronary arteries. , 2008, Journal of interventional cardiology.

[34]  R. Kellman,et al.  Recent advances in fixation of the craniomaxillofacial skeleton , 2012, Current opinion in otolaryngology & head and neck surgery.

[35]  Andrea Meyer-Lindenberg,et al.  Long-term in vivo degradation behaviour and biocompatibility of the magnesium alloy ZEK100 for use as a biodegradable bone implant. , 2013, Acta biomaterialia.

[36]  Joon B. Park Biomaterials:An Introduction , 1992 .

[37]  J. Kruger,et al.  Corrosion of magnesium , 1993 .

[38]  G. Bidwell,et al.  Development of elastin-like polypeptide for thermally targeted delivery of doxorubicin. , 2007, Biochemical pharmacology.

[39]  A. Mikos,et al.  Chapter 33 – Synthetic Polymers , 2011 .

[40]  Yu‐Chan Kim,et al.  Effects of impurities on the biodegradation behavior of pure magnesium , 2009 .

[41]  Jörg F. Löffler,et al.  Assessing the degradation performance of ultrahigh-purity magnesium in vitro and in vivo , 2015 .

[42]  J. Nriagu Zinc Toxicity in Humans , 2019, Encyclopedia of Environmental Health.

[43]  Peng Wang,et al.  The engineering of patient-specific, anatomically shaped, digits. , 2009, Biomaterials.

[44]  A. Grodzinsky,et al.  Mechanical and physicochemical determinants of the chondrocyte biosynthetic response , 1988, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[45]  Chun Xing Li Poly(L-glutamic acid)--anticancer drug conjugates. , 2002, Advanced drug delivery reviews.

[46]  E. Willbold,et al.  Biodegradable magnesium scaffolds: Part 1: appropriate inflammatory response. , 2007, Journal of biomedical materials research. Part A.

[47]  Cato T Laurencin,et al.  Polymers as biomaterials for tissue engineering and controlled drug delivery. , 2006, Advances in biochemical engineering/biotechnology.

[48]  Yufeng Zheng,et al.  Novel Magnesium Alloys Developed for Biomedical Application: A Review , 2013 .

[49]  Martin J D'Souza,et al.  Development of albumin microspheres containing Sp H1-DNA complexes: A novel gene delivery system , 2010, Journal of microencapsulation.

[50]  M. Störmer,et al.  Magnesium alloys as implant materials--principles of property design for Mg-RE alloys. , 2010, Acta biomaterialia.

[51]  F. Prima,et al.  Electroformed iron as new biomaterial for degradable stents: development process and structure-properties relationship. , 2010, Acta biomaterialia.

[52]  Buddy D. Ratner,et al.  Introduction – Biomaterials Science: An Evolving, Multidisciplinary Endeavor , 2013 .

[53]  Robert Langer,et al.  Synthesis and Characterization of Degradable Poly(anhydride-co-imides) , 1995 .

[54]  H. J. Zhang,et al.  Improving mechanical properties and corrosion resistance of Mg6ZnMn magnesium alloy by rapid solidification , 2013 .

[55]  Frank Witte,et al.  The history of biodegradable magnesium implants: a review. , 2010, Acta biomaterialia.

[56]  M. Störmer,et al.  Biodegradable magnesium-hydroxyapatite metal matrix composites. , 2007, Biomaterials.

[57]  A. Lloyd,et al.  Interfacial bioengineering to enhance surface biocompatibility. , 2002, Medical device technology.

[58]  M. A. Abdul Kadir,et al.  In vitro and in vivo degradation evaluation of novel iron-bioceramic composites for bone implant applications. , 2014, Materials science & engineering. C, Materials for biological applications.

[59]  J. Vormann Magnesium: nutrition and metabolism. , 2003, Molecular aspects of medicine.

[60]  D. Mantovani,et al.  Fe-Mn alloys for metallic biodegradable stents: degradation and cell viability studies. , 2010, Acta biomaterialia.

[61]  A. A. Nayeb-Hashemi,et al.  The Mg-Nd System (Magnesium-Neodymium) , 1988 .

[62]  V Prasad Shastri,et al.  Non-degradable biocompatible polymers in medicine: past, present and future. , 2003, Current pharmaceutical biotechnology.

[63]  D. Kurniawan,et al.  Influence of Heat Treatment Cooling Mediums on the Degradation Property of Biodegradable Zn-3Mg Alloy , 2013 .

[64]  H. Haferkamp,et al.  In vivo corrosion of four magnesium alloys and the associated bone response. , 2005, Biomaterials.

[65]  R. Raman,et al.  In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. , 2008, Biomaterials.

[66]  M. Vallet‐Regí Evolution of bioceramics within the field of biomaterials , 2010 .

[67]  D. Mantovani,et al.  Electroformed pure iron as a new biomaterial for degradable stents: in vitro degradation and preliminary cell viability studies. , 2010, Acta biomaterialia.

[68]  Ke Yang,et al.  In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. , 2007, Journal of biomedical materials research. Part A.

[69]  T. Tamaki,et al.  Reduced platelet adhesion to titanium metal coated with apatite, albumin-apatite composite or laminin-apatite composite. , 2005, Biomaterials.

[70]  B. Luan,et al.  Protective coatings on magnesium and its alloys — a critical review , 2002 .

[71]  A. Hartwig,et al.  Role of magnesium in genomic stability. , 2001, Mutation research.

[72]  Yufeng Zheng,et al.  In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material , 2011 .

[73]  C T Laurencin,et al.  Biodegradable polyphosphazenes for drug delivery applications. , 2003, Advanced drug delivery reviews.

[74]  C. Fierke,et al.  Function and mechanism of zinc metalloenzymes. , 2000, The Journal of nutrition.

[75]  R. Adhikari,et al.  Biodegradable synthetic polymers for tissue engineering. , 2003, European cells & materials.

[76]  Jeremy Goldman,et al.  Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents , 2013, Advanced materials.

[77]  M. Peuster,et al.  Control of smooth muscle cell proliferation by ferrous iron. , 2006, Biomaterials.

[78]  F Leonard,et al.  Biodegradable poly(lactic acid) polymers. , 1971, Journal of biomedical materials research.

[79]  M. Peuster,et al.  Degradation of tungsten coils implanted into the subclavian artery of New Zealand white rabbits is not associated with local or systemic toxicity. , 2003, Biomaterials.

[80]  Yufeng Zheng,et al.  Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. , 2011, Acta biomaterialia.

[81]  J. Kerstetter,et al.  Nutrition in Bone Health Revisited: A Story Beyond Calcium , 2000, Journal of the American College of Nutrition.

[82]  P. Törmälä,et al.  Biodegradable self-reinforced composite materials; manufacturing structure and mechanical properties. , 1992, Clinical materials.

[83]  J C Middleton,et al.  Synthetic biodegradable polymers as orthopedic devices. , 2000, Biomaterials.

[84]  Yong Wang,et al.  Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid , 2004 .

[85]  Ke Yang,et al.  Microstructure, corrosion properties and bio-compatibility of calcium zinc phosphate coating on pure iron for biomedical application. , 2014, Materials science & engineering. C, Materials for biological applications.

[86]  H. S. Azevedo,et al.  Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends , 2007, Journal of The Royal Society Interface.

[87]  Yan Li,et al.  Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres. , 2011, Pharmacological research.

[88]  Shizhe Song,et al.  A Possible Biodegradable Magnesium Implant Material , 2007 .

[89]  A. Steinbüchel,et al.  Microbial degradation of poly(amino acid)s. , 2004, Biomacromolecules.

[90]  Ke Yang,et al.  Study of bio-corrosion of pure magnesium , 2005 .

[91]  J. Voegel,et al.  Influence of magnesium substitution on a collagen-apatite biomaterial on the production of a calcifying matrix by human osteoblasts. , 1998, Journal of biomedical materials research.

[92]  Y. Ikada,et al.  In vitro and in vivo comparison of bulk and surface hydrolysis in absorbable polymer scaffolds for tissue engineering. , 1999, Journal of biomedical materials research.

[93]  M. Mabuchi,et al.  Effects of Ca addition on the microstructure and mechanical properties of AZ91magnesium alloy , 2001 .

[94]  M. Verhofstad,et al.  Indications for implant removal after fracture healing: a review of the literature , 2013, European Journal of Trauma and Emergency Surgery.

[95]  M. Akashi,et al.  Polymer Drugs and Polymeric Drugs X: Slow Release of 5-Fluorouracil from Biodegradable Poly(γ-Glutamic Acid) and its Benzyl Ester Matrices , 1998 .

[96]  Yufeng Zheng,et al.  In vitro corrosion and biocompatibility of binary magnesium alloys. , 2009, Biomaterials.

[97]  G. Tromp,et al.  Matrix glycosaminoglycans in the growth phase of fibroblasts: more of the story in wound healing. , 2000, The Journal of surgical research.

[98]  Y. Estrin,et al.  Bio-corrosion of a magnesium alloy with different processing histories , 2008 .

[99]  P. Uggowitzer,et al.  MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. , 2009, Nature materials.

[100]  Prasad K D V Yarlagadda,et al.  Recent advances and current developments in tissue scaffolding. , 2005, Bio-medical materials and engineering.

[101]  A R Boccaccini,et al.  Biomedical coatings on magnesium alloys - a review. , 2012, Acta biomaterialia.

[102]  K. Yang,et al.  Nickel-free austenitic stainless steels for medical applications , 2010, Science and technology of advanced materials.

[103]  A. Kastrati,et al.  Four‐Year Experience With Palmaz‐Schatz Stenting in Coronary Angioplasty Complicated by Dissection With Threatened or Present Vessel Closure , 1994, Circulation.

[104]  A. Mikos,et al.  Effects of biodegradable polymer particles on rat marrow-derived stromal osteoblasts in vitro. , 1998, Biomaterials.

[105]  S. Krane,et al.  The importance of proline residues in the structure, stability and susceptibility to proteolytic degradation of collagens , 2008, Amino Acids.

[106]  W. Ding,et al.  Biocorrosion properties of as-extruded Mg–Nd–Zn–Zr alloy compared with commercial AZ31 and WE43 alloys , 2012 .

[107]  Yufeng Zheng,et al.  Progress of biodegradable metals , 2014 .

[108]  U. Stöckle,et al.  Refrakturen nach Entfernung von Osteosynthesematerialien , 2012, Der Unfallchirurg.

[109]  M. H. Idris,et al.  Partially degradable friction-welded pure iron-stainless steel 316L bone pin. , 2015, Journal of biomedical materials research. Part B, Applied biomaterials.

[110]  S. Yeap,et al.  Cytotoxicity evaluation of biodegradable Zn-3Mg alloy toward normal human osteoblast cells. , 2015, Materials science & engineering. C, Materials for biological applications.

[111]  S. Ramakrishna,et al.  Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers , 2008, Journal of materials science. Materials in medicine.

[112]  A. U. Daniels,et al.  Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products. , 1994, Journal of applied biomaterials : an official journal of the Society for Biomaterials.

[113]  Ashutosh Chilkoti,et al.  Applications of elastin-like polypeptides in tissue engineering. , 2010, Advanced drug delivery reviews.

[114]  L. Rokhlin Magnesium Alloys Containing Rare Earth Metals: Structure and Properties , 2003 .

[115]  A. Singh,et al.  Ti based biomaterials, the ultimate choice for orthopaedic implants – A review , 2009 .

[116]  M. Otagiri,et al.  Pharmaceutical Strategies Utilizing Recombinant Human Serum Albumin , 2002, Pharmaceutical Research.

[117]  J. Kubásek,et al.  Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. , 2011, Acta biomaterialia.

[118]  H. Hermawan Biodegradable Metals: From Concept to Applications , 2012 .

[119]  Pierre Layrolle,et al.  Biomimetic Hydroxyapatite Coating on Metal Implants , 2004 .

[120]  Yufeng Zheng,et al.  Microstructure, mechanical property, biodegradation behavior, and biocompatibility of biodegradable Fe-Fe2O3 composites. , 2014, Journal of biomedical materials research. Part A.

[121]  M. Peuster,et al.  A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal—results 6–18 months after implantation into New Zealand white rabbits , 2001, Heart.

[122]  H. Haferkamp,et al.  Approach to Control the Corrosion of Magnesium by Alloying , 2005 .

[123]  Eyal Zussman,et al.  About the albumin structure in solution and related electro-spinnability issues. , 2010, International journal of biological macromolecules.

[124]  Philippe Poitras,et al.  Internal plate fixation of fractures: short history and recent developments , 2006, Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association.

[125]  Ji-Young Lee,et al.  Influence of Ca on the corrosion properties of magnesium for biomaterials , 2008 .

[126]  A. Weiss,et al.  Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers. , 2004, Biomaterials.

[127]  Kun Wang,et al.  In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn-Mg alloy. , 2015, Journal of biomedical materials research. Part B, Applied biomaterials.

[128]  R. Langer,et al.  In vitro degradation characteristics of poly(anhydride‐imides) containing trimellitylimidoglycine , 1997 .

[129]  D. Mantovani,et al.  Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents. , 2009, Journal of biomedical materials research. Part A.

[130]  谭丽丽,et al.  新型生物可降解Fe-30Mn-1C合金的性能研究 , 2011 .

[131]  Yufeng Zheng,et al.  The development of binary Mg-Ca alloys for use as biodegradable materials within bone. , 2008, Biomaterials.

[132]  M. Peuster,et al.  In vitro and in vivo corrosion properties of new iron-manganese alloys designed for cardiovascular applications. , 2015, Journal of biomedical materials research. Part B, Applied biomaterials.

[133]  Qing Liu,et al.  Effect of Microstructure and Texture on Corrosion Resistance of Magnesium Alloy , 2009 .

[134]  R. Suuronen,et al.  Comparison of absorbable self-reinforced multilayer poly-l-lactide and metallic plates for the fixation of mandibular body osteotomies: an experimental study in sheep. , 1992, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons.

[135]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[136]  A Haverich,et al.  Left main coronary artery fistula exiting into the right atrium , 2003, Heart.

[137]  Kinam Park,et al.  Human extracellular matrix (ECM) powders for injectable cell delivery and adipose tissue engineering. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[138]  D. Witten,et al.  The benefits of implant removal from the foot and ankle. , 2012, The Journal of bone and joint surgery. American volume.

[139]  M. Fontecave,et al.  Iron: metabolism, toxicity and therapy. , 1993, Biochimie.

[140]  N Birbilis,et al.  Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. , 2012, Acta biomaterialia.

[141]  P. Uggowitzer,et al.  On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys. , 2010, Acta biomaterialia.

[142]  Robert Langer,et al.  Classes of Materials Used in Medicine , 1996 .

[143]  R. Kaushik,et al.  Poly-ϵ-caprolactone microspheres and nanospheres: an overview , 2004 .

[144]  G. Phillips,et al.  Chain scission of hyaluronan by peroxynitrite. , 2003, Archives of biochemistry and biophysics.

[145]  M. Niinomi,et al.  Development of new metallic alloys for biomedical applications. , 2012, Acta biomaterialia.

[146]  Tadashi Kokubo,et al.  Bioceramics and Their Clinical Applications , 2008 .

[147]  Raju Adhikari,et al.  Recent developments in biodegradable synthetic polymers. , 2006, Biotechnology annual review.

[148]  Ke Yang,et al.  Microstructure, mechanical properties and corrosion properties of Mg–Zn–Y alloys with low Zn content , 2008 .

[149]  P. Uggowitzer,et al.  Biodegradable Fe-based alloys for use in osteosynthesis: outcome of an in vivo study after 52 weeks. , 2014, Acta biomaterialia.

[150]  L. Kanerva,et al.  Allergic nickel and chromate hand dermatitis induced by orthopaedic metal implant , 2001, Contact dermatitis.

[151]  George Dangas,et al.  Update on In-stent Restenosis. , 2001, Current interventional cardiology reports.

[152]  N E Saris,et al.  Magnesium. An update on physiological, clinical and analytical aspects. , 2000, Clinica chimica acta; international journal of clinical chemistry.

[153]  T. Barrows Degradable implant materials: A review of synthetic absorbable polymers and their applications , 1986 .

[154]  A. D'emanuele,et al.  Effect of geometry on the erosion characteristics of polyanhydride matrices , 1998 .

[155]  S. Virtanen,et al.  Time-dependent electrochemical characterization of the corrosion of a magnesium rare-earth alloy in simulated body fluids. , 2008, Journal of biomedical materials research. Part A.

[156]  Raul Machado,et al.  Thermoresponsive self-assembled elastin-based nanoparticles for delivery of BMPs. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[157]  Yang Song,et al.  Research on an Mg-Zn alloy as a degradable biomaterial. , 2010, Acta biomaterialia.

[158]  L. Setton,et al.  Sustained release of antibiotics from injectable and thermally responsive polypeptide depots. , 2008, Journal of biomedical materials research. Part B, Applied biomaterials.

[159]  Michel Vert,et al.  In vivo degradation of massive poly(α-hydroxy acids): Validation of In vitro findings , 1992 .

[160]  M. Zhang,et al.  Surface Grain Size Effects on the Corrosion of Magnesium , 2008 .

[161]  C. Kaeding,et al.  Bioabsorbable implant material review , 2004 .

[162]  Tatsuo Nakamura,et al.  Development of beta-tricalcium phosphate/collagen sponge composite for bone regeneration. , 2006, Dental materials journal.

[163]  J. Kubásek,et al.  Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys. , 2016, Materials science & engineering. C, Materials for biological applications.

[164]  Brandon D Bushnell,et al.  Early clinical experience with collagen nerve tubes in digital nerve repair. , 2008, The Journal of hand surgery.

[165]  Yufeng Zheng,et al.  Relatively uniform and accelerated degradation of pure iron coated with micro-patterned Au disc arrays. , 2015, Materials science & engineering. C, Materials for biological applications.

[166]  O. Böstman Absorbable implants for the fixation of fractures. , 1991, The Journal of bone and joint surgery. American volume.

[167]  J. Caron,et al.  Glucosamine and chondroitin sulfate regulate gene expression and synthesis of nitric oxide and prostaglandin E(2) in articular cartilage explants. , 2005, Osteoarthritis and cartilage.

[168]  F. Majid,et al.  Degradation and in vitro cell–material interaction studies on hydroxyapatite-coated biodegradable porous iron for hard tissue scaffolds , 2014 .

[169]  David Hui,et al.  A critical review on polymer-based bio-engineered materials for scaffold development , 2007 .

[170]  G Pitarresi,et al.  A new biodegradable and biocompatible hydrogel with polyaminoacid structure. , 2007, International journal of pharmaceutics.