Automatically Proving Equivalence by Type-Safe Reflection
暂无分享,去创建一个
[1] Adam Chlipala,et al. Certified Programming with Dependent Types - A Pragmatic Introduction to the Coq Proof Assistant , 2013 .
[2] Claude Kirchner,et al. Theorem Proving Modulo , 2003, Journal of Automated Reasoning.
[3] Viktor Vafeiadis,et al. Mtac: A monad for typed tactic programming in Coq , 2015, J. Funct. Program..
[4] Edwin Brady,et al. Idris, a general-purpose dependently typed programming language: Design and implementation , 2013, Journal of Functional Programming.
[5] David Delahaye,et al. A Proof Dedicated Meta-Language , 2002, LFM.
[6] Adam Chlipala,et al. Compositional Computational Reflection , 2014, ITP.
[7] William A. Howard,et al. The formulae-as-types notion of construction , 1969 .
[8] Yves Bertot,et al. Interactive Theorem Proving and Program Development: Coq'Art The Calculus of Inductive Constructions , 2010 .
[9] Fredrik Lindblad,et al. A Tool for Automated Theorem Proving in Agda , 2004, TYPES.
[10] Damien Doligez,et al. Zenon Modulo: When Achilles Outruns the Tortoise Using Deduction Modulo , 2013, LPAR.
[11] William M. Farmer. The Formalization of Syntax-Based Mathematical Algorithms Using Quotation and Evaluation , 2013, MKM/Calculemus/DML.
[12] David Delahaye,et al. Field, une procédure de décision pour les nombres réels en Coq , 2001, JFLA.
[13] Wouter Swierstra,et al. Auto in Agda - Programming Proof Search Using Reflection , 2015, MPC.
[14] U. Norell,et al. Towards a practical programming language based on dependent type theory , 2007 .
[15] Jacques Carette,et al. Theory Presentation Combinators , 2012, AISC/MKM/Calculemus.
[16] Edwin Brady,et al. Constructing Correct Circuits: Verification of Functional Aspects of Hardware Specifications with Dependent Types , 2007, Trends in Functional Programming.
[17] Benjamin Grégoire,et al. Proving Equalities in a Commutative Ring Done Right in Coq , 2005, TPHOLs.