Finer filtration for matrix-valued cocycle based on Oseledec's multiplicative ergodic theorem

We consider a measurable matrix-valued cocycle A : Z+ × X → Rd×d, driven by a measurepreserving transformation T of a probability space ( X,F , μ), with the integrability condition log ‖A(1, ·)‖ ∈ L1(μ). We show that forμ-a.e.x ∈ X, if lim n→∞ 1 n log‖A(n, x)v‖ = 0 for all v ∈ Rd \ {0}, then the trajectory{A(n, x)v}n=0 is far away from 0 (i.e. lim sup n→∞ ‖A(n, x)v‖ > 0) and there is some nonzero v such that lim sup n→∞ ‖A(n, x)v‖ ≥ ‖v‖. This improves the classical multiplicative ergodic theorem of Oseledeč. We here prese nt an application to linear random processes to illustrate the importance.

[1]  D. J. Hartfiel,et al.  Sequential limits in Markov set-chains , 1991, Journal of Applied Probability.

[2]  Geir E. Dullerud,et al.  Uniformly Stabilizing Sets of Switching Sequences for Switched Linear Systems , 2007, IEEE Transactions on Automatic Control.

[3]  S. V. Fomin,et al.  Ergodic Theory , 1982 .

[4]  Yu Huang,et al.  Realization of joint spectral radius via Ergodic theory , 2011 .

[5]  David P. Stanford,et al.  Complete controllability and contractibility in multimodal systems , 1988 .

[6]  Xiongping Dai On the approximation of Lyapunov exponents and a question suggested by Anatole Katok , 2010 .

[7]  Leiba Rodman,et al.  Erratum: Pointwise and Uniformly Convergent Sets of Matrices , 2000, SIAM J. Matrix Anal. Appl..

[8]  Liao Shantao On Characteristic Exponents Construction of a New Borel Set for the Multiplicative Ergodic Theorem for Vector Fields , 1993 .

[9]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[10]  D. Stanford,et al.  Some Convergence Properties of Matrix Sets , 1994 .

[11]  Xiongping Dai Robust periodic stability implies uniform exponential stability for a random linear semiflow driven by a dynamical system with closing property , 2013, ArXiv.

[12]  Zhendong Sun Stabilizability and insensitivity of switched linear systems , 2004, IEEE Transactions on Automatic Control.

[13]  Gary Froyland,et al.  Coherent structures and isolated spectrum for Perron–Frobenius cocycles , 2008, Ergodic Theory and Dynamical Systems.

[14]  P. Walters Introduction to Ergodic Theory , 1977 .

[15]  Yakov Pesin,et al.  The Multiplicative Ergodic Theorem , 2013 .

[16]  G. Froyland,et al.  COHERENT STRUCTURES FOR PERRON – FROBENIUS COCYCLES , 2008 .

[17]  Leiba Rodman,et al.  Convergence of Polynomially Bounded Semigroups of Matrices , 1997, SIAM J. Matrix Anal. Appl..

[18]  I. Morris A rapidly-converging lower bound for the joint spectral radius via multiplicative ergodic theory , 2009, 0906.0260.

[19]  A formula with some applications to the theory of Lyapunov exponents , 2001, math/0104103.

[20]  Xiongping Dai,et al.  Integral expressions of Lyapunov exponents for autonomous ordinary differential systems , 2008 .

[21]  Non­zero Lyapunov exponents and uniform hyperbolicity , 2003 .

[22]  L. Arnold Random Dynamical Systems , 2003 .

[23]  J. Mairesse,et al.  Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture , 2001 .

[24]  Yu Huang,et al.  Pointwise Stability of Discrete-Time Stationary Matrix-Valued Markovian Processes , 2015, IEEE Transactions on Automatic Control.

[25]  V. Kozyakin Structure of extremal trajectories of discrete linear systems and the finiteness conjecture , 2007 .

[26]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[27]  Zhendong Sun Stabilization and optimization of switched linear systems , 2006, Autom..

[28]  Robert Shorten,et al.  Stability Criteria for Switched and Hybrid Systems , 2007, SIAM Rev..

[29]  Zhou Zuo-ling Level of the orbit's topological structure and topological semi-conjugacy , 1995 .

[30]  Yu Huang,et al.  Pointwise Stabilization of Discrete-time Stationary Matrix-valued Markovian Chains , 2011 .

[31]  Rapha L. Jungers The Joint Spectral Radius , 2009 .

[32]  M. Mirzakhani,et al.  Introduction to Ergodic theory , 2010 .

[33]  Leiba Rodman,et al.  Pointwise and Uniformly Convergent Sets of Matrices , 1999, SIAM J. Matrix Anal. Appl..

[34]  Ian D. Morris,et al.  The generalized Berger-Wang formula and the spectral radius of linear cocycles , 2009, 0906.2915.

[35]  C. Caramanis What is ergodic theory , 1963 .

[36]  Xiongping Dai,et al.  Extremal and Barabanov semi-norms of a semigroup generated by a bounded family of matrices , 2011 .

[37]  David P. Stanford,et al.  Stability for a Multi-Rate Sampled-Data System , 1979 .

[38]  Yu Huang,et al.  Periodically switched stability induces exponential stability of discrete-time linear switched systems in the sense of Markovian probabilities , 2011, Autom..

[39]  Xiongping Dai Weakly Birkhoff recurrent switching signals, almost sure and partial stability of linear switched dynamical systems , 2011 .

[40]  G. Rota,et al.  A note on the joint spectral radius , 1960 .

[41]  G. Atkinson Recurrence of Co-Cycles and Random Walks , 1976 .

[42]  Geir E. Dullerud,et al.  Optimal Disturbance Attenuation for Discrete-Time Switched and Markovian Jump Linear Systems , 2006, SIAM J. Control. Optim..

[43]  M. Eisen,et al.  Probability and its applications , 1975 .

[44]  Xiongping Dai,et al.  Hyperbolicity and integral expression of the Lyapunov exponents for linear cocycles , 2007 .

[45]  V. Kozyakin,et al.  Finiteness property of a bounded set of matrices with uniformly sub-peripheral spectrum , 2011, 1106.2298.