The Use of Quantum Potentials for Confinement and Tunnelling in Semiconductor Devices

[1]  S. Ramey,et al.  3D Monte Carlo Modeling of Thin SOI MOSFETs Including the Effective Potential and Random Dopant Distribution , 2002 .

[2]  Can the Density Gradient Approach Describe the Source-Drain Tunnelling in Decanano Double-Gate MOSFETs? , 2002 .

[3]  M. Anantram,et al.  Two-dimensional quantum mechanical modeling of nanotransistors , 2001, cond-mat/0111290.

[4]  S. Datta,et al.  Examination of design and manufacturing issues in a 10 nm double gate MOSFET using nonequilibrium Green's function simulation , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[5]  D. Hisamoto FD/DG-SOI MOSFET-a viable approach to overcoming the device scaling limit , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[6]  M. Hussein,et al.  An enhanced 130 nm generation logic technology featuring 60 nm transistors optimized for high performance and low power at 0.7 - 1.4 V , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[7]  Andrew R. Brown,et al.  Increase in the random dopant induced threshold fluctuations and lowering in sub-100 nm MOSFETs due to quantum effects: a 3-D density-gradient simulation study , 2001 .

[8]  Quantum Corrections in 3-D Drift Diffusion Simulations of Decanano MOSFETs Using an Effective Potential , 2001 .

[9]  K. Hess,et al.  A full-band Monte Carlo model for silicon nanoscale devices with a quantum mechanical correction of the potential , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[10]  D. Vasileska,et al.  Quantum effects in MOSFETs: use of an effective potential in 3D Monte Carlo simulation of ultra-short channel devices , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[11]  Mario G. Ancona,et al.  Equations of state for silicon inversion layers , 2000 .

[12]  Toshitsugu Sakamoto,et al.  Observation of source-to-drain direct tunneling current in 8 nm gate electrically variable shallow junction metal–oxide–semiconductor field-effect transistors , 2000 .

[13]  Quantum potential approaches for nano-scale device simulation , 2000, 7th International Workshop on Computational Electronics. Book of Abstracts. IWCE (Cat. No.00EX427).

[14]  Quantum mechanical Monte Carlo approach to electron transport at heterointerface , 2000 .

[15]  Toshitsugu Sakamoto,et al.  Transistor characteristics of 14-nm-gate-length EJ-MOSFETs , 2000 .

[16]  D. Ferry The onset of quantization in ultra-submicron semiconductor devices , 2000 .

[17]  S. Saini,et al.  Quantum mechanical enhancement of the random dopant induced threshold voltage fluctuations and lowering in sub 0.1 micron MOSFETs , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[18]  A. Asenov Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 /spl mu/m MOSFET's: A 3-D "atomistic" simulation study , 1998 .

[19]  Yuan Taur,et al.  Fundamentals of Modern VLSI Devices , 1998 .

[20]  Zhiping Yu,et al.  Multi-dimensional Quantum Effect Simulation Using a Density-Gradient Model and Script-Level Programming Techniques , 1998 .

[21]  Gerhard Klimeck,et al.  Quantitative simulation of a resonant tunneling diode , 1997, Journal of Applied Physics.

[22]  M. R. Pinto,et al.  Electron and hole quantization and their impact on deep submicron silicon p- and n-MOSFET characteristics , 1997 .

[23]  Gerhard Klimeck,et al.  Quantitative Resonant Tunneling Diode Simulation , 1997 .

[24]  J. Barker CHAPTER 19 – Fundamental Aspects of Quantum Transport Theory , 1992 .

[25]  G. Iafrate,et al.  Quantum correction to the equation of state of an electron gas in a semiconductor. , 1989, Physical review. B, Condensed matter.

[26]  C. Snowden Semiconductor Device Modelling , 1988 .

[27]  P. Carruthers,et al.  Quantum collision theory with phase-space distributions , 1983 .

[28]  H. L. Grubin,et al.  The Wigner Distribution Function , 1982 .

[29]  A. Fetter,et al.  Quantum Theory of Many-Particle Systems , 1971 .

[30]  F. Stern Iteration methods for calculating self-consistent fields in semiconductor inversion layers , 1970 .

[31]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .