Reflection Groups and Rigidity of Quadratic Poisson Algebras
暂无分享,去创建一个
Jason Gaddis | Padmini Veerapen | Xinting Wang | Jason Gaddis | Xingting Wang | Padmini Veerapen | Xinting Wang
[1] P. Polo,et al. A Rigidity Theorem for Finite Group Actions on Enveloping Algebras of Semisimple Lie Algebras , 1995 .
[2] Luigi Ferraro,et al. Differential graded algebra over quotients of skew polynomial rings by normal elements , 2019, Transactions of the American Mathematical Society.
[3] M. Audard,et al. Detection of the Neupert Effect in the Corona of an RS Canum Venaticorum Binary System by XMM-Newton and the Very Large Array , 2002, astro-ph/0206080.
[4] A. Tikaradze. The Weyl algebra as a fixed ring , 2017, Advances in Mathematics.
[5] Jason Gaddis,et al. The Zariski cancellation problem for Poisson algebras , 2019, Journal of the London Mathematical Society.
[6] J. J. Zhang,et al. Shephard–Todd–Chevalley Theorem for Skew Polynomial Rings , 2008, 0806.3210.
[7] A. Polishchuk. Algebraic geometry of Poisson brackets , 1997 .
[8] Chelsea M. Walton,et al. Poisson geometry of PI three‐dimensional Sklyanin algebras , 2017, Proceedings of the London Mathematical Society.
[9] Xingting Wang,et al. Homological unimodularity and Calabi–Yau condition for Poisson algebras , 2016, 1608.00172.
[10] R. Przybysz. On one class of exact Poisson structures , 2001 .
[11] U. Washington,et al. Rigidity of graded regular algebras , 2007, 0706.0662.
[12] C. Chevalley. Invariants of Finite Groups Generated by Reflections , 1955 .
[13] Kei-ichi Watanabe. Certain invariant subrings are Gorenstein. II , 1974 .
[14] U. Umirbaev. Universal enveloping algebras and universal derivations of Poisson algebras , 2011, 1102.0366.
[15] Larry Smith,et al. Polynomial Invariants of Finite Groups , 1995 .
[16] 渡辺 敬一. Certain invariant subrings are Gorenstein , 1976 .
[17] Certain invariant subrings are Gorenstein. II , 1974 .
[18] Jason Gaddis. The isomorphism problem for quantum affine spaces, homogenized quantized Weyl algebras, and quantum matrix algebras , 2016, 1605.08711.
[19] Jia-Feng Lu,et al. Universal enveloping algebras of Poisson Ore extensions , 2014, 1403.5852.
[20] Sei-Qwon Oh. Poisson enveloping algebras , 1999 .
[21] A. Borel. Essays in the history of Lie groups and algebraic groups , 2001 .
[22] G. C. Shephard,et al. Finite Unitary Reflection Groups , 1954, Canadian Journal of Mathematics.
[23] Milen Yakimov,et al. Poisson geometry and representations of PI 4-dimensional Sklyanin algebras , 2018, Selecta Mathematica.
[24] M. Vancliff. The Defining Relations of Quantum n × n Matrices , 1995 .
[25] L. Topley,et al. The orbit method for Poisson orders , 2017, Proceedings of the London Mathematical Society.
[26] S. P. Smith. Can the Weyl algebra be a fixed ring , 1989 .
[27] Kenneth A. Brown,et al. Poisson orders, symplectic reflection algebras and representation theory , 2002 .
[28] James J. Zhang,et al. Unimodular graded Poisson Hopf algebras , 2017, Bulletin of the London Mathematical Society.
[29] Sei-Qwon Oh. Poisson Polynomial Rings , 2006 .
[30] B. G. R. Bossoto,et al. A-Poisson structures , 2010, 1010.3398.
[31] M. Kontsevich,et al. Automorphisms of the Weyl Algebra , 2005, math/0512169.
[32] J. J. Zhang,et al. INVARIANT THEORY OF FINITE GROUP ACTIONS ON DOWN-UP ALGEBRAS , 2013, 1308.0579.
[33] S.-Q. Wang,et al. Twisted Poincar\'{e} duality between Poisson homology and Poisson cohomology , 2014, 1404.5177.
[34] David J. Benson,et al. Polynomial invariants of finite groups , 1993 .
[35] K. Goodearl. Semiclassical Limits of Quantized Coordinate Rings , 2008, 0812.1612.
[36] J. Dixmier. Sur les algèbres de Weyl , 1968 .
[37] D. Farkas,et al. Finite Group Actions on Poisson Algebras , 2003 .
[38] A. Tikaradze. Derived invariants of the fixed ring of enveloping algebras of semisimple Lie algebras , 2019, Mathematische Zeitschrift.