On the Shard Intersection Order of a Coxeter Group

Introduced by Reading, the shard intersection order of a finite Coxeter group $W$ is a lattice structure on the elements of $W$ that contains the poset of noncrossing partitions $NC(W)$ as a sublattice. Building on work of Bancroft in the case of the symmetric group, we provide combinatorial models for shard intersections of all classical types and use this understanding to prove that the shard intersection order is EL-shellable. Further, inspired by work of Simion and Ullman on the lattice of noncrossing partitions, we show that the shard intersection order on the symmetric group admits a symmetric Boolean decomposition, i.e., a partition into disjoint Boolean algebras whose middle ranks coincide with the middle rank of the poset. Our decomposition also yields a new symmetric Boolean decomposition of the noncrossing partition lattice.

[2]  Victor Reiner,et al.  Noncrossing Partitions for the Group Dn , 2005, SIAM J. Discret. Math..

[3]  A. Björner Shellable and Cohen-Macaulay partially ordered sets , 1980 .

[4]  Patricia Hersh Deformation of Chains via a Local Symmetric Group Action , 1999, Electron. J. Comb..

[5]  Daniel J. Kleitman,et al.  Strong Versions of Sperner's Theorem , 1976, J. Comb. Theory, Ser. A.

[6]  D. Foata,et al.  Theorie Geometrique des Polynomes Euleriens , 1970 .

[7]  John R. Stembridge,et al.  Coxeter cones and their h-vectors , 2008 .

[8]  Michelle L. Wachs Poset Topology: Tools and Applications , 2006 .

[9]  A. Postnikov,et al.  Faces of Generalized Permutohedra , 2006, math/0609184.

[10]  Shellability of noncrossing partition lattices , 2005, math/0503007.

[11]  T. Kyle Petersen,et al.  On γ-Vectors Satisfying the Kruskal–Katona Inequalities , 2011, Discret. Comput. Geom..

[12]  Dominique Foata,et al.  Rearrangements of the symmetric group and enumerative properties of the tangent and secant numbers , 1974 .

[13]  Rodica Simion,et al.  On the structure of the lattice of noncrossing partitions , 1991, Discret. Math..

[14]  Drew Armstrong,et al.  Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups , 2006, math/0611106.

[15]  Jon McCammond,et al.  Noncrossing Partitions in Surprising Locations , 2006, Am. Math. Mon..

[16]  Victor Reiner,et al.  Non-crossing partitions for classical reflection groups , 1997, Discret. Math..

[17]  Nathan Reading Noncrossing partitions and the shard intersection order , 2009, 0909.3288.

[18]  S. Fomin,et al.  Root systems and generalized associahedra , 2005, math/0505518.

[19]  Swiatoslaw R. Gal Real Root Conjecture Fails for Five- and Higher-Dimensional Spheres , 2005, Discret. Comput. Geom..

[20]  Louis W. Shapiro,et al.  Runs, Slides and Moments , 1983 .

[21]  Petter Brändén Sign-Graded Posets, Unimodality of W-Polynomials and the Charney-Davis Conjecture , 2004, Electron. J. Comb..

[22]  M. Anshelevich Free Stochastic Measures via Noncrossing Partitions , 1999, math/9903084.

[23]  Jerrold R. Griggs,et al.  Sufficient Conditions for a Symmetric Chain Order , 1977 .

[24]  H. Thomas,et al.  Noncrossing partitions and representations of quivers , 2006, Compositio Mathematica.