A Deep Learning-Based Algorithm Identifies Glaucomatous Discs Using Monoscopic Fundus Photographs.

[1]  R. Klein,et al.  Prevalence of glaucoma. The Beaver Dam Eye Study. , 1992, Ophthalmology.

[2]  Screening for open-angle glaucoma. , 1993, American family physician.

[3]  Screening for open-angle glaucoma. , 1993 .

[4]  P. Mitchell,et al.  Prevalence of open-angle glaucoma in Australia. The Blue Mountains Eye Study. , 1996, Ophthalmology.

[5]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[6]  Chris A. Johnson,et al.  The association between glaucomatous visual fields and optic nerve head features in the Ocular Hypertension Treatment Study. , 2006, Ophthalmology.

[7]  3D vs 2D qualitative and semiquantitative evaluation of the glaucomatous optic disc atrophy using computer-assisted stereophotography , 2008, Eye.

[8]  R. Susanna,et al.  Comparison of Quantitative Imaging Devices and Subjective Optic Nerve Head Assessment by General Ophthalmologists to Differentiate Normal From Glaucomatous Eyes , 2008, Journal of glaucoma.

[9]  Jost B Jonas,et al.  Clinical assessment of stereoscopic optic disc photographs for glaucoma: the European Optic Disc Assessment Trial. , 2010, Ophthalmology.

[10]  Francisco Fumero,et al.  RIM-ONE: An open retinal image database for optic nerve evaluation , 2011, 2011 24th International Symposium on Computer-Based Medical Systems (CBMS).

[11]  Shizuo Mukai,et al.  Simple, Inexpensive Technique for High-Quality Smartphone Fundus Photography in Human and Animal Eyes , 2013, Journal of ophthalmology.

[12]  E. O'Neill,et al.  Glaucomatous optic neuropathy evaluation (GONE) project: the effect of monoscopic versus stereoscopic viewing conditions on optic nerve evaluation. , 2014, American journal of ophthalmology.

[13]  Monali S. Malvankar-Mehta,et al.  The Effectiveness of Teleglaucoma versus In-Patient Examination for Glaucoma Screening: A Systematic Review and Meta-Analysis , 2014, PloS one.

[14]  T. Wong,et al.  Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. , 2014, Ophthalmology.

[15]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[16]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[17]  Tien Yin Wong,et al.  Prevalence, Risk Factors, and Visual Features of Undiagnosed Glaucoma: The Singapore Epidemiology of Eye Diseases Study. , 2015, JAMA ophthalmology.

[18]  M. Abràmoff,et al.  Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning. , 2016, Investigative ophthalmology & visual science.

[19]  Hiroshi Murata,et al.  Detecting Preperimetric Glaucoma with Standard Automated Perimetry Using a Deep Learning Classifier. , 2016, Ophthalmology.

[20]  Subhashini Venugopalan,et al.  Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. , 2016, JAMA.

[21]  Thomas Brox,et al.  Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Rishab Gargeya,et al.  Automated Identification of Diabetic Retinopathy Using Deep Learning. , 2017, Ophthalmology.

[23]  Yusuke Arai,et al.  Applying artificial intelligence to disease staging: Deep learning for improved staging of diabetic retinopathy , 2017, PloS one.

[24]  Sebastian Thrun,et al.  Dermatologist-level classification of skin cancer with deep neural networks , 2017, Nature.