Anchor Group Influence on Molecule-Metal Oxide Interfaces: Periodic Hybrid DFT Study of Pyridine Bound to TiO2 via Carboxylic and Phosphonic Acid

Adsorption of pyridine to TiO2 anatase(1 0 1) surfaces via carboxylic acid and phosphonic acid anchor groups has been investigated using periodic DFT calculations. Stronger adsorption is observed for pyridine-4-phosphonic acid than for pyridine-4-carboxylic acid. Periodic molecular orbitals are visualized, and surface electron transfer properties are interpreted in terms of the orbital mixing. More pronounced electronic interactions of the π* level with the TiO2 conduction band is observed for the pyridine-4-carboxylic acid than for the pyridine-4-phosphonic acid. This suggests that surface electron injection times via the carboxylic anchor group can be twice as fast as via the phosphonic anchor group.

[1]  C. Bignozzi,et al.  Synthesis and comprehensive characterizations of new cis-RuL(2)X(2) (X = Cl, CN, and NCS) sensitizers for nanocrystalline TiO(2) solar cell using Bis-phosphonated bipyridine ligands (L). , 2003, Inorganic chemistry.

[2]  L. Ojamäe,et al.  Electronic interactions between aromatic adsorbates and metal oxide substrates calculated from first principles , 2002 .

[3]  L. Ojamäe,et al.  Quantum-chemical studies of metal oxides for photoelectrochemical applications , 2002 .

[4]  Petter Persson,et al.  Calculated structural and electronic interactions of the ruthenium dye N3 with a titanium dioxide nanocrystal. , 2005, The journal of physical chemistry. B.

[5]  S. Zakeeruddin,et al.  Molecular Engineering of Photosensitizers for Nanocrystalline Solar Cells: Synthesis and Characterization of Ru Dyes Based on Phosphonated Terpyridines. , 1997, Inorganic chemistry.

[6]  E. Costa,et al.  Phosphonate-based bipyridine dyes for stable photovoltaic devices. , 2001, Inorganic chemistry.

[7]  A Kokalj,et al.  XCrySDen--a new program for displaying crystalline structures and electron densities. , 1999, Journal of molecular graphics & modelling.

[8]  N. Harrison,et al.  On the prediction of band gaps from hybrid functional theory , 2001 .

[9]  Luc Patthey,et al.  Experimental evidence for sub-3-fs charge transfer from an aromatic adsorbate to a semiconductor , 2002, Nature.

[10]  L. Ojamäe,et al.  Phosphonic acid adsorption at the TiO2 anatase (101) surface investigated by periodic hybrid HF-DFT computations, , 2005 .

[11]  M. Grätzel,et al.  Surface Modification of Titanium with Phosphonic Acid To Improve Bone Bonding: Characterization by XPS and ToF-SIMS , 2002 .

[12]  S. Lunell,et al.  Binding of bi-isonicotinic acid to anatase TiO2 (101) , 2000 .

[13]  Michael Grätzel,et al.  Applications of functionalized transition metal complexes in photonic and optoelectronic devices , 1998 .

[14]  Annabella Selloni,et al.  Formic Acid Adsorption on Dry and Hydrated TiO2 Anatase (101) Surfaces by DFT Calculations , 2000 .

[15]  H. Shin,et al.  Effects of Surface Anchoring Groups (Carboxylate vs Phosphonate) in Ruthenium-Complex-Sensitized TiO2 on Visible Light Reactivity in Aqueous Suspensions , 2004 .

[16]  A. Hagfeldt,et al.  LI AND NA DIFFUSION IN TIO2 FROM QUANTUM CHEMICAL THEORY VERSUS ELECTROCHEMICAL EXPERIMENT , 1997 .

[17]  Petter Persson,et al.  Quantum Chemical Prediction of the Adsorption Conformations and Dynamics at HCOOH-Covered ZnO (10-10) Surfaces , 2002 .

[18]  Yi Luo,et al.  Molecular ordering in isonicotinic acid on rutile TiO2(110) investigated with valence band photoemission. , 2004, The Journal of chemical physics.

[19]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[20]  S. Zakeeruddin,et al.  Preparation of phosphonated polypyridyl ligands to anchor transition-metal complexes on oxide surfaces: application for the conversion of light to electricity with nanocrystalline TiO2 films. [Erratum to document cited in CA122:165412] , 1995 .

[21]  Arthur J. Nozik,et al.  Surface Electron Transfer Processes , 1995 .

[22]  William Stier,et al.  Nonadiabatic Molecular Dynamics Simulation of Light-Induced Electron Transfer from an Anchored Molecular Electron Donor to a Semiconductor Acceptor † , 2002 .

[23]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[24]  L. Curtiss,et al.  Computational studies of catechol and water interactions with titanium oxide nanoparticles. , 2003 .

[25]  John B. Asbury,et al.  Ultrafast Electron Transfer Dynamics from Molecular Adsorbates to Semiconductor Nanocrystalline Thin Films , 2001 .

[26]  B. Silvi,et al.  Extended gaussian-type valence basis sets for calculations involving non-empirical core pseudopotentials , 1988 .

[27]  Petter Persson,et al.  Periodic Hartree-Fock Study of the Adsorption of Formic Acid on ZnO(10-10) , 2000 .

[28]  P. A. Brühwiler,et al.  N 1s x-ray absorption study of the bonding interaction of bi-isonicotinic acid adsorbed on rutile TiO2(110) , 2000 .

[29]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[30]  O. Prezhdo,et al.  Non-adiabatic molecular dynamics simulation of ultrafast solar cell electron transfer , 2003 .

[31]  Elena Galoppini,et al.  Linkers for anchoring sensitizers to semiconductor nanoparticles , 2004 .

[32]  Antonio Tilocca,et al.  Time-dependent DFT study of [Fe(CN)6]4- sensitization of TiO2 nanoparticles. , 2004, Journal of the American Chemical Society.