Large area photoconductive terahertz emitter for 1.55 μm excitation based on an InGaAs heterostructure

We present scalable large area terahertz (THz) emitters based on a nanoscale multilayer InGaAs/InAlAs heterostructure and a microstructured electrode pattern. The emitters are designed for pump lasers working at the telecommunication wavelength of 1.55 μm. Electric THz fields of more than 2.5 V cm⁻¹ are reached with moderate pump powers of 80 mW, the corresponding spectrum extends up to 3 THz. The saturation characteristics have been investigated for different pump laser spot sizes. For small pump powers of less than 50 mW the emitted THz field is nearly independent of the spot size, for higher pump powers and small spot sizes a clear saturation of the generated THz pulse can be observed. Hence the use of scalable emitters is especially promising for high power fibre laser systems. The spectral content of the generated radiation is nearly independent of the parameters spot size, pump power, and bias voltage, which allows for stable operation in spectroscopic applications.

[1]  Stephen E Ralph,et al.  Efficient photoconductive terahertz source using line excitation. , 2005, Optics letters.

[2]  Jeffrey Bokor,et al.  High-intensity terahertz pulses at 1-kHz repetition rate , 1996 .

[3]  Thomas Dekorsy,et al.  High-intensity terahertz radiation from a microstructured large-area photoconductor , 2005 .

[4]  B. Sartorius,et al.  Next generation 1.5 microm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers. , 2010, Optics express.

[5]  Michael Nagel,et al.  Characterization of low temperature GaAs antenna array terahertz emitters , 2007 .

[6]  B. Sartorius,et al.  All-fiber terahertz time-domain spectrometer operating at 1.5 microm telecom wavelengths. , 2008, Optics express.

[7]  S. Winnerl,et al.  Increased terahertz emission from thermally treated GaSb , 2004 .

[8]  Stephan Winnerl,et al.  Scalable Microstructured Photoconductive Terahertz Emitters , 2012 .

[9]  M. Tani,et al.  Study of terahertz radiation from InAs and InSb , 2002 .

[10]  Masayoshi Tonouchi,et al.  Fe-implanted InGaAs terahertz emitters for 1.56μm wavelength excitation , 2005 .

[11]  Jiro Kitagawa,et al.  Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56μm pulse excitation , 2007 .

[12]  James Lloyd-Hughes,et al.  A Review of the Terahertz Conductivity of Bulk and Nano-Materials , 2012 .

[13]  K. Cheung,et al.  Picosecond photoconducting Hertzian dipoles , 1984 .

[14]  Sascha Preu,et al.  Tunable, continuous-wave Terahertz photomixer sources and applications , 2011 .

[15]  Xiang Zhang,et al.  Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics , 1992 .

[16]  R. Schouten,et al.  Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter , 2002 .

[17]  N. Chimot,et al.  Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55μm , 2005 .

[18]  Edmund H. Linfield,et al.  Simulation of terahertz generation at semiconductor surfaces , 2002 .

[19]  Xiang Zhang,et al.  Saturation properties of large-aperture photoconducting antennas , 1991 .

[20]  N. Vieweg,et al.  Monitoring polymeric compounding processes inline with THz time-domain spectroscopy , 2009 .

[21]  K. Kohler,et al.  Generation and Detection of THz Radiation With Scalable Antennas Based on GaAs Substrates With Different Carrier Lifetimes , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[22]  A. Davies,et al.  Far-Infrared Spectroscopic Characterization of Explosives for Security Applications Using Broadband Terahertz Time-Domain Spectroscopy , 2007, Applied spectroscopy.

[23]  Ci-Ling Pan,et al.  THz radiation emission properties of multienergy arsenic-ion-implanted GaAs and semi-insulating GaAs based photoconductive antennas , 2003, Journal of Applied Physics.

[24]  A. Taylor,et al.  Scaling of terahertz radiation from large-aperture biased InP photoconductors. , 1993, Optics letters.

[25]  R Gebs,et al.  Terahertz emission from lateral photo-Dember currents , 2010, 2010 Conference Proceedings ICECom, 20th International Conference on Applied Electromagnetics and Communications.

[26]  J. Faist,et al.  Photo-Dember terahertz emitter excited with an Er:fiber laser , 2011 .

[27]  Jagdeep Shah,et al.  Femtosecond Charge Transport in Polar Semiconductors , 1999 .

[28]  G Klatt,et al.  Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna. , 2010, Optics express.

[29]  Sascha Preu,et al.  1550 nm ErAs:In(Al)GaAs large area photoconductive emitters , 2012 .

[30]  Carl Shneider,et al.  Enhanced terahertz emission from impurity compensated GaSb , 2005 .

[31]  Masahiko Tani,et al.  Terahertz Time-Domain Spectroscopy of Solids: A Review , 2005 .

[32]  S. Winnerl,et al.  Optimum excitation conditions for the generation of high-electric-field terahertz radiation from an oscillator-driven photoconductive device. , 2006, Optics letters.

[33]  Xu,et al.  Terahertz generation from Si3N4 covered photoconductive dipole antenna , 2003 .

[34]  T. Gregorkiewicz,et al.  Silicon quantum dots: surface matters , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  M. Tani,et al.  Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs. , 1997, Applied optics.

[36]  M. Koch,et al.  THz generation at 1.55 µm excitation: six-fold increase in THz conversion efficiency by separated photoconductive and trapping regions. , 2011, Optics express.