A Fast Settling Phase Modulator for Outphasing Transmitters in 65-nm CMOS

We present a phase modulator architecture with very fast settling time for use in high data-rate outphasing transmitters. The proposed design utilizes the phase-shifting capabilities of a resonant tank and the ability to separately control the circuit properties via its components. A prototype in 65-nm CMOS achieves 9 bits of effective resolution, with a fast settling time of less than five carrier cycles to within 1°. The circuit is also tested as a standalone transmitter showing an error vector magnitude of less than 5% for 8-PSK modulation at maximum data rate of 240 Mb/s, meeting the Federal Communications Commission requirements for operation at the medical implant communication services band.

[1]  Scott K. Arfin,et al.  Fast startup CMOS current references , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[2]  David R. Cox,et al.  Linear Amplification with Nonlinear Components , 1974, IEEE Trans. Commun..

[3]  SungWon Chung,et al.  Asymmetric multilevel outphasing architecture for multi-standard transmitters , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.

[4]  A.A. Abidi,et al.  All-Digital Outphasing Modulator for a Software-Defined Transmitter , 2009, IEEE Journal of Solid-State Circuits.

[5]  M. Muraguchi,et al.  An MMIC active phase shifter using a variable resonant circuit , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).

[6]  Leonard R. Kahn,et al.  Single-Sideband Transmission by Envelope Elimination and Restoration , 1952, Proceedings of the IRE.

[7]  Anantha Chandrakasan,et al.  A 350μW CMOS MSK transmitter and 400μW OOK super-regenerative receiver for Medical Implant Communications , 2009, 2008 IEEE Symposium on VLSI Circuits.

[8]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[9]  H. Chireix High Power Outphasing Modulation , 1935, Proceedings of the Institute of Radio Engineers.

[10]  C.C. Boon,et al.  Analysis and Design of RC Polyphase Network for Quadrature Signal Generation in the 2.45GHz ISM Band , 2007, 2007 International Symposium on Integrated Circuits.

[11]  Giovanni Marzin,et al.  A 20 Mb/s Phase Modulator Based on a 3.6 GHz Digital PLL With −36 dB EVM at 5 mW Power , 2012, IEEE Journal of Solid-State Circuits.

[12]  T. Barton,et al.  A 12-bit resolution, 200-MSample/second phase modulator for a 2.5GHz carrier with discrete carrier pre-rotation in 65nm CMOS , 2011, 2011 IEEE Radio Frequency Integrated Circuits Symposium.

[13]  S. Gambini,et al.  A 90 nm CMOS Low-Power 60 GHz Transceiver With Integrated Baseband Circuitry , 2009, IEEE Journal of Solid-State Circuits.

[14]  Brian Ellis The Design of CMOS Radio-Frequency Integrated Circuits , 2004 .

[15]  SungWon Chung,et al.  A 2.4-GHz, 27-dBm Asymmetric Multilevel Outphasing Power Amplifier in 65-nm CMOS , 2012, IEEE Journal of Solid-State Circuits.

[16]  Joy Laskar,et al.  Highly efficient uneven multi-level linc transmitter , 2009 .

[17]  Joel L. Dawson,et al.  A low-Q resonant tank phase modulator for outphasing transmitters , 2013, 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[18]  Hen-Wai Tsao,et al.  Multilevel LINC System Design for Wireless Transmitters , 2007, 2007 International Symposium on VLSI Design, Automation and Test (VLSI-DAT).

[19]  D. Kimball,et al.  Wideband envelope elimination and restoration power amplifier with high efficiency wideband envelope amplifier for WLAN 802.11g applications , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[20]  Pin-En Su,et al.  A 2.4 GHz Wideband Open-Loop GFSK Transmitter With Phase Quantization Noise Cancellation , 2011, IEEE Journal of Solid-State Circuits.

[21]  Yorgos Palaskas,et al.  A 2.4-GHz 20–40-MHz Channel WLAN Digital Outphasing Transmitter Utilizing a Delay-Based Wideband Phase Modulator in 32-nm CMOS , 2012, IEEE Journal of Solid-State Circuits.