INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids (2010) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.2267 Modified augmented Lagrangian preconditioners for the incompressible Navier
暂无分享,去创建一个
[1] F. Harlow,et al. Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .
[2] M. Fortin,et al. Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .
[3] F. Brezzi,et al. On the Stabilization of Finite Element Approximations of the Stokes Equations , 1984 .
[4] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[5] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .
[6] Begnaud Francis Hildebrand,et al. Introduction to numerical analysis: 2nd edition , 1987 .
[7] J. Cahouet,et al. Some fast 3D finite element solvers for the generalized Stokes problem , 1988 .
[8] Yousef Saad,et al. A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..
[9] Patrick R. Amestoy,et al. An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..
[10] Howard C. Elman,et al. Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations , 1996, SIAM J. Sci. Comput..
[11] Alessandro Russo,et al. Approximation of the Stokes problem by residual-free macro bubbles , 1996 .
[12] R. Sani,et al. Incompressible Flow and the Finite Element Method, Volume 1, Advection-Diffusion and Isothermal Laminar Flow , 1998 .
[13] S. Turek. Efficient solvers for incompressible flow problems: An algorithmic approach . . , 1998 .
[14] Joachim Schöberl,et al. Multigrid methods for a parameter dependent problem in primal variables , 1999, Numerische Mathematik.
[15] Maxim A. Olshanskii,et al. An iterative solver for the Oseen problem and numerical solution of incompressible Navier-Stokes equations , 1999, Numer. Linear Algebra Appl..
[16] P. Wesseling. Principles of Computational Fluid Dynamics , 2000 .
[17] A. Quarteroni. Cardiovascular mathematics , 2000 .
[18] Roland Becker,et al. A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .
[19] R. Codina. A stabilized finite element method for generalized stationary incompressible flows , 2001 .
[20] J. Szmelter. Incompressible flow and the finite element method , 2001 .
[21] Arnold Neumaier,et al. Introduction to Numerical Analysis , 2001 .
[22] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[23] Maxim A. Olshanskii,et al. Grad-div stablilization for Stokes equations , 2003, Math. Comput..
[24] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[25] Tamara G. Kolda,et al. An overview of the Trilinos project , 2005, TOMS.
[26] Howard C. Elman,et al. Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .
[27] Clark R. Dohrmann,et al. Stabilization of Low-order Mixed Finite Elements for the Stokes Equations , 2004, SIAM J. Numer. Anal..
[28] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[29] Maxim A. Olshanskii,et al. An Augmented Lagrangian-Based Approach to the Oseen Problem , 2006, SIAM J. Sci. Comput..
[30] John N. Shadid,et al. Least Squares Preconditioners for Stabilized Discretizations of the Navier-Stokes Equations , 2007, SIAM J. Sci. Comput..
[31] Jia Liu,et al. An Efficient Solver for the Incompressible Navier-Stokes Equations in Rotation Form , 2007, SIAM J. Sci. Comput..
[32] Howard C. Elman,et al. Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow , 2007, TOMS.
[33] A. de Niet,et al. Two preconditioners for saddle point problems in fluid flows , 2007 .
[34] C. Vuik,et al. A comparison of preconditioners for incompressible Navier–Stokes solvers , 2008 .
[35] Maxim A. Olshanskii,et al. An Augmented Lagrangian Approach to Linearized Problems in Hydrodynamic Stability , 2008, SIAM J. Sci. Comput..
[36] C. Vuik,et al. SIMPLE‐type preconditioners for the Oseen problem , 2009 .
[37] C. Vuik,et al. Preconditioners for the Steady Incompressible Navier-Stokes Problem , 2008 .
[38] Maxim A. Olshanskii,et al. Grad–div stabilization and subgrid pressure models for the incompressible Navier–Stokes equations , 2009 .
[39] Alexander Linke,et al. Collision in a cross-shaped domain - A steady 2d Navier-Stokes example demonstrating the importance of mass conservation in CFD , 2009 .
[40] Michele Benzi,et al. New multigrid smoothers for the Oseen problem , 2010, Numer. Linear Algebra Appl..
[41] Volker John,et al. Numerical Studies of Finite Element Variational Multiscale Methods for Turbulent Flow Simulations , 2010 .
[42] Y. Notay. An aggregation-based algebraic multigrid method , 2010 .