INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids (2010) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.2267 Modified augmented Lagrangian preconditioners for the incompressible Navier

We study different variants of the augmented Lagrangian (AL)‐based block‐triangular preconditioner introduced by the first two authors in [SIAM J. Sci. Comput. 2006; 28: 2095–2113]. The preconditioners are used to accelerate the convergence of the Generalized Minimal Residual method (GMRES) applied to various finite element and Marker‐and‐Cell discretizations of the Oseen problem in two and three space dimensions. Both steady and unsteady problems are considered. Numerical experiments show the effectiveness of the proposed preconditioners for a wide range of problem parameters. Implementation on parallel architectures is also considered. The AL‐based approach is further generalized to deal with linear systems from stabilized finite element discretizations. Copyright © 2010 John Wiley & Sons, Ltd.

[1]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[2]  M. Fortin,et al.  Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .

[3]  F. Brezzi,et al.  On the Stabilization of Finite Element Approximations of the Stokes Equations , 1984 .

[4]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[5]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[6]  Begnaud Francis Hildebrand,et al.  Introduction to numerical analysis: 2nd edition , 1987 .

[7]  J. Cahouet,et al.  Some fast 3D finite element solvers for the generalized Stokes problem , 1988 .

[8]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[9]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[10]  Howard C. Elman,et al.  Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations , 1996, SIAM J. Sci. Comput..

[11]  Alessandro Russo,et al.  Approximation of the Stokes problem by residual-free macro bubbles , 1996 .

[12]  R. Sani,et al.  Incompressible Flow and the Finite Element Method, Volume 1, Advection-Diffusion and Isothermal Laminar Flow , 1998 .

[13]  S. Turek Efficient solvers for incompressible flow problems: An algorithmic approach . . , 1998 .

[14]  Joachim Schöberl,et al.  Multigrid methods for a parameter dependent problem in primal variables , 1999, Numerische Mathematik.

[15]  Maxim A. Olshanskii,et al.  An iterative solver for the Oseen problem and numerical solution of incompressible Navier-Stokes equations , 1999, Numer. Linear Algebra Appl..

[16]  P. Wesseling Principles of Computational Fluid Dynamics , 2000 .

[17]  A. Quarteroni Cardiovascular mathematics , 2000 .

[18]  Roland Becker,et al.  A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .

[19]  R. Codina A stabilized finite element method for generalized stationary incompressible flows , 2001 .

[20]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[21]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[22]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[23]  Maxim A. Olshanskii,et al.  Grad-div stablilization for Stokes equations , 2003, Math. Comput..

[24]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[25]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[26]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[27]  Clark R. Dohrmann,et al.  Stabilization of Low-order Mixed Finite Elements for the Stokes Equations , 2004, SIAM J. Numer. Anal..

[28]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[29]  Maxim A. Olshanskii,et al.  An Augmented Lagrangian-Based Approach to the Oseen Problem , 2006, SIAM J. Sci. Comput..

[30]  John N. Shadid,et al.  Least Squares Preconditioners for Stabilized Discretizations of the Navier-Stokes Equations , 2007, SIAM J. Sci. Comput..

[31]  Jia Liu,et al.  An Efficient Solver for the Incompressible Navier-Stokes Equations in Rotation Form , 2007, SIAM J. Sci. Comput..

[32]  Howard C. Elman,et al.  Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow , 2007, TOMS.

[33]  A. de Niet,et al.  Two preconditioners for saddle point problems in fluid flows , 2007 .

[34]  C. Vuik,et al.  A comparison of preconditioners for incompressible Navier–Stokes solvers , 2008 .

[35]  Maxim A. Olshanskii,et al.  An Augmented Lagrangian Approach to Linearized Problems in Hydrodynamic Stability , 2008, SIAM J. Sci. Comput..

[36]  C. Vuik,et al.  SIMPLE‐type preconditioners for the Oseen problem , 2009 .

[37]  C. Vuik,et al.  Preconditioners for the Steady Incompressible Navier-Stokes Problem , 2008 .

[38]  Maxim A. Olshanskii,et al.  Grad–div stabilization and subgrid pressure models for the incompressible Navier–Stokes equations , 2009 .

[39]  Alexander Linke,et al.  Collision in a cross-shaped domain - A steady 2d Navier-Stokes example demonstrating the importance of mass conservation in CFD , 2009 .

[40]  Michele Benzi,et al.  New multigrid smoothers for the Oseen problem , 2010, Numer. Linear Algebra Appl..

[41]  Volker John,et al.  Numerical Studies of Finite Element Variational Multiscale Methods for Turbulent Flow Simulations , 2010 .

[42]  Y. Notay An aggregation-based algebraic multigrid method , 2010 .