The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens

The human gastrointestinal tract hosts a diverse network of microorganisms, collectively known as the microbiota that plays an important role in health and disease. For instance, the intestinal microbiota can prevent invading microbes from colonizing the gastrointestinal tract, a phenomenon known as colonization resistance. Perturbations to the microbiota, such as antibiotic administration, can alter microbial composition and result in the loss of colonization resistance. Consequently, the host may be rendered susceptible to colonization by a pathogen. This is a particularly relevant concern in the hospital setting, where antibiotic use and antibiotic‐resistant pathogen exposure are more frequent. Many nosocomial infections arise from gastrointestinal colonization. Due to their resistance to antibiotics, treatment is often very challenging. However, recent studies have demonstrated that manipulating the commensal microbiota can prevent and treat various infections in the intestine. In this review, we discuss the members of the microbiota, as well as the mechanisms, that govern colonization resistance against specific pathogens. We also review the effects of antibiotics on the microbiota, as well as the unique epidemiology of immunocompromised patients that renders them a particularly high‐risk population to intestinal nosocomial infections.

[1]  S. Morjaria,et al.  Commensal microbes provide first line defense against Listeria monocytogenes infection , 2017, The Journal of experimental medicine.

[2]  E. Pamer,et al.  Cooperating Commensals Restore Colonization Resistance to Vancomycin-Resistant Enterococcus faecium. , 2017, Cell host & microbe.

[3]  S. Abramson,et al.  Short- and long-term effects of oral vancomycin on the human intestinal microbiota , 2016, The Journal of antimicrobial chemotherapy.

[4]  L. Jia,et al.  Advances in antibiotic therapy in the critically ill , 2016, Critical Care.

[5]  R. Edwards,et al.  Microcins mediate competition among Enterobacteriaceae in the inflamed gut , 2016, Nature.

[6]  Peter T. McKenney,et al.  Clostridium difficile colitis: pathogenesis and host defence , 2016, Nature Reviews Microbiology.

[7]  Y. Taur,et al.  Microbiome mediation of infections in the cancer setting , 2016, Genome Medicine.

[8]  N. Geva-Zatorsky,et al.  Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species , 2016, Proceedings of the National Academy of Sciences.

[9]  C. Buffie,et al.  TLR-7 activation enhances IL-22–mediated colonization resistance against vancomycin-resistant enterococcus , 2016, Science Translational Medicine.

[10]  L. Comstock,et al.  Type VI secretion systems of human gut Bacteroidales segregate into three genetic architectures, two of which are contained on mobile genetic elements , 2016, BMC Genomics.

[11]  I. Amit,et al.  Microbiota-Modulated Metabolites Shape the Intestinal Microenvironment by Regulating NLRP6 Inflammasome Signaling , 2015, Cell.

[12]  Nora C. Toussaint,et al.  Loss of Microbiota-Mediated Colonization Resistance to Clostridium difficile Infection With Oral Vancomycin Compared With Metronidazole. , 2015, The Journal of infectious diseases.

[13]  Pavlos Bousounis,et al.  Bacteriocin production augments niche competition by enterococci in the mammalian GI tract , 2015, Nature.

[14]  Na-Ri Shin,et al.  Proteobacteria: microbial signature of dysbiosis in gut microbiota. , 2015, Trends in biotechnology.

[15]  K. Manova,et al.  Distinct but Spatially Overlapping Intestinal Niches for Vancomycin-Resistant Enterococcus faecium and Carbapenem-Resistant Klebsiella pneumoniae , 2015, PLoS pathogens.

[16]  R. P. Ross,et al.  The sactibiotic subclass of bacteriocins: an update. , 2015, Current protein & peptide science.

[17]  E. Pamer,et al.  Innate Immune Defenses Mediated by Two ILC Subsets Are Critical for Protection against Acute Clostridium difficile Infection. , 2015, Cell host & microbe.

[18]  Y. Taur,et al.  Role of intestinal microbiota in transplantation outcomes. , 2015, Best practice & research. Clinical haematology.

[19]  B. Weimer,et al.  Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance. , 2014, Cell host & microbe.

[20]  Peter Cimermancic,et al.  A Systematic Analysis of Biosynthetic Gene Clusters in the Human Microbiome Reveals a Common Family of Antibiotics , 2014, Cell.

[21]  W. D. de Vos,et al.  The first 1000 cultured species of the human gastrointestinal microbiota , 2014, FEMS microbiology reviews.

[22]  J. Salojärvi,et al.  Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men , 2014, The ISME Journal.

[23]  S. B. Peterson,et al.  Type VI secretion system effectors: poisons with a purpose , 2014, Nature Reviews Microbiology.

[24]  E. Pamer,et al.  Fecal microbiota transplantation: effectiveness, complexities, and lingering concerns , 2014, Mucosal Immunology.

[25]  Lawrence A. David,et al.  Diet rapidly and reproducibly alters the human gut microbiome , 2013, Nature.

[26]  Michael Grabe,et al.  Antibacterial membrane attack by a pore-forming intestinal C-type lectin , 2013, Nature.

[27]  C. Buffie,et al.  Microbiota-mediated colonization resistance against intestinal pathogens , 2013, Nature Reviews Immunology.

[28]  M. Icaza-Chávez,et al.  Gut microbiota in health and disease , 2013 .

[29]  B. Weimer,et al.  Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens , 2013, Nature.

[30]  A. Gasbarrini,et al.  Commensal Clostridia: leading players in the maintenance of gut homeostasis , 2013, Gut Pathogens.

[31]  W. Garrett,et al.  The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis , 2013, Science.

[32]  Y. Taur,et al.  The intestinal microbiota and susceptibility to infection in immunocompromised patients , 2013, Current opinion in infectious diseases.

[33]  Gabriel Núñez,et al.  Control of pathogens and pathobionts by the gut microbiota , 2013, Nature Immunology.

[34]  T. Buckley,et al.  Antibiotic Administration Routes Significantly Influence the Levels of Antibiotic Resistance in Gut Microbiota , 2013, Antimicrobial Agents and Chemotherapy.

[35]  Ajay S. Gulati,et al.  Mouse Paneth cell antimicrobial function is independent of Nod2 , 2013, Gut.

[36]  I. Martínez,et al.  Gut microbiome composition is linked to whole grain-induced immunological improvements , 2012, The ISME Journal.

[37]  R. P. Ross,et al.  Bacteriocins — a viable alternative to antibiotics? , 2012, Nature Reviews Microbiology.

[38]  E. Cascales,et al.  Imaging type VI secretion-mediated bacterial killing. , 2013, Cell reports.

[39]  E. Zoetendal,et al.  Duodenal infusion of donor feces for recurrent Clostridium difficile. , 2013, The New England journal of medicine.

[40]  Paul S. Cohen,et al.  Nutritional Basis for Colonization Resistance by Human Commensal Escherichia coli Strains HS and Nissle 1917 against E. coli O157:H7 in the Mouse Intestine , 2013, PloS one.

[41]  Nora C. Toussaint,et al.  Intestinal Microbiota Containing Barnesiella Species Cures Vancomycin-Resistant Enterococcus faecium Colonization , 2013, Infection and Immunity.

[42]  S. Sonis,et al.  Pathobiology of Cancer Regimen-Related Toxicities , 2013, Springer New York.

[43]  E. Cascales,et al.  Promoter Swapping Unveils the Role of the Citrobacter rodentium CTS1 Type VI Secretion System in Interbacterial Competition , 2012, Applied and Environmental Microbiology.

[44]  N. Socci,et al.  Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. , 2012, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[45]  Taane G. Clark,et al.  Targeted Restoration of the Intestinal Microbiota with a Simple, Defined Bacteriotherapy Resolves Relapsing Clostridium difficile Disease in Mice , 2012, PLoS pathogens.

[46]  R. Knight,et al.  Diversity, stability and resilience of the human gut microbiota , 2012, Nature.

[47]  Vincent B. Young,et al.  Suppression of Clostridium difficile in the Gastrointestinal Tracts of Germfree Mice Inoculated with a Murine Isolate from the Family Lachnospiraceae , 2012, Infection and Immunity.

[48]  R. Porcher,et al.  Clostridium difficile infection after allogeneic hematopoietic stem cell transplantation: incidence, risk factors, and outcome. , 2012, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation.

[49]  Fernanda C. Lessa,et al.  Current Status of Clostridium difficile Infection Epidemiology , 2012, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[50]  E. Pamer,et al.  Critical Role for MyD88-Mediated Neutrophil Recruitment during Clostridium difficile Colitis , 2012, Infection and Immunity.

[51]  G. Núñez,et al.  Regulated Virulence Controls the Ability of a Pathogen to Compete with the Gut Microbiota , 2012, Science.

[52]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[53]  E. Martens,et al.  How glycan metabolism shapes the human gut microbiota , 2012, Nature Reviews Microbiology.

[54]  C. Huff,et al.  Epidemiology and outcomes of Clostridium difficile infections in hematopoietic stem cell transplant recipients. , 2012, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[55]  G. Jensen,et al.  Type VI secretion requires a dynamic contractile phage tail-like structure , 2012, Nature.

[56]  T. Hohl,et al.  Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. , 2012, Immunity.

[57]  Michael A Fischbach,et al.  Eating for two: how metabolism establishes interspecies interactions in the gut. , 2011, Cell host & microbe.

[58]  A. Viale,et al.  Profound Alterations of Intestinal Microbiota following a Single Dose of Clindamycin Results in Sustained Susceptibility to Clostridium difficile-Induced Colitis , 2011, Infection and Immunity.

[59]  M. Bäckström,et al.  Composition and functional role of the mucus layers in the intestine , 2011, Cellular and Molecular Life Sciences.

[60]  J. Walter,et al.  The human gut microbiome: ecology and recent evolutionary changes. , 2011, Annual review of microbiology.

[61]  Waldemar Vollmer,et al.  Type VI secretion delivers bacteriolytic effectors to target cells , 2011, Nature.

[62]  G. Michel,et al.  Environmental and Gut Bacteroidetes: The Food Connection , 2011, Front. Microbio..

[63]  G. Nava,et al.  Spatial organization of intestinal microbiota in the mouse ascending colon , 2011, The ISME Journal.

[64]  K. Sepkowitz,et al.  Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 Update by the Infectious Diseases Society of America. , 2011, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[65]  J. Parkhill,et al.  Dominant and diet-responsive groups of bacteria within the human colonic microbiota , 2011, The ISME Journal.

[66]  A. Velcich,et al.  Importance and regulation of the colonic mucus barrier in a mouse model of colitis. , 2011, American journal of physiology. Gastrointestinal and liver physiology.

[67]  E. Pamer,et al.  Toll-Like Receptor 5 Stimulation Protects Mice from Acute Clostridium difficile Colitis , 2011, Infection and Immunity.

[68]  G. Alangaden,et al.  Recent epidemiology of Clostridium difficile infection during hematopoietic stem cell transplantation , 2011, Clinical transplantation.

[69]  N. Socci,et al.  Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. , 2010, The Journal of clinical investigation.

[70]  G. Papanicolaou,et al.  The changing epidemiology of vancomycin-resistant Enterococcus (VRE) bacteremia in allogeneic hematopoietic stem cell transplant (HSCT) recipients. , 2010, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation.

[71]  C. Hill,et al.  Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon , 2010, Proceedings of the National Academy of Sciences.

[72]  John W. Froehlich,et al.  Consumption of human milk oligosaccharides by gut-related microbes. , 2010, Journal of agricultural and food chemistry.

[73]  W. Tissing,et al.  The Role of Intestinal Microbiota in the Development and Severity of Chemotherapy-Induced Mucositis , 2010, PLoS pathogens.

[74]  J. Vederas,et al.  Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile , 2010, Proceedings of the National Academy of Sciences.

[75]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[76]  B. Currie,et al.  Incidence of Clostridium difficile Infection in Patients with Acute Leukemia and Lymphoma after Allogeneic Hematopoietic Stem Cell Transplantation , 2010, Infection Control & Hospital Epidemiology.

[77]  A. Macpherson,et al.  Immune adaptations that maintain homeostasis with the intestinal microbiota , 2010, Nature Reviews Immunology.

[78]  Richard A Flavell,et al.  Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. , 2010, The Journal of infectious diseases.

[79]  G. Eliopoulos,et al.  The Sanford guide to antimicrobial therapy , 2010 .

[80]  M. Levison,et al.  Pharmacokinetics and pharmacodynamics of antibacterial agents. , 2009, Infectious disease clinics of North America.

[81]  S. Rebuffat,et al.  Isolation and Characterization of Two Members of the Siderophore-Microcin Family, Microcins M and H47 , 2009, Antimicrobial Agents and Chemotherapy.

[82]  M. Pasparakis,et al.  Regulation of tissue homeostasis by NF-κB signalling: implications for inflammatory diseases , 2009, Nature Reviews Immunology.

[83]  Christophe Caron,et al.  Towards the human intestinal microbiota phylogenetic core. , 2009, Environmental microbiology.

[84]  Tomas Hrncir,et al.  Nod2 is required for the regulation of commensal microbiota in the intestine , 2009, Proceedings of the National Academy of Sciences.

[85]  Cynthia L Sears,et al.  A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses , 2009, Nature Medicine.

[86]  J. Jiménez,et al.  Comparative genomic analysis uncovers 3 novel loci encoding type six secretion systems differentially distributed in Salmonella serotypes , 2009, BMC Genomics.

[87]  Mark H. Wilcox,et al.  Clostridium difficile infection: new developments in epidemiology and pathogenesis , 2009, Nature Reviews Microbiology.

[88]  C. Sears Enterotoxigenic Bacteroides fragilis: a Rogue among Symbiotes , 2009, Clinical Microbiology Reviews.

[89]  J. M. Sauder,et al.  Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin , 2009, Proceedings of the National Academy of Sciences.

[90]  Inka Brockhausen,et al.  O-GalNAc Glycans , 2009 .

[91]  J. Gordon,et al.  Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. , 2008, Cell host & microbe.

[92]  Ronald P. DeMatteo,et al.  Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits , 2008, Nature.

[93]  M. Havaux,et al.  A large gene cluster encoding peptide synthetases and polyketide synthases is involved in production of siderophores and oxidative stress response in the cyanobacterium Anabaena sp. strain PCC 7120. , 2008, Environmental microbiology.

[94]  M. Karin,et al.  Opposing functions of IKKβ during acute and chronic intestinal inflammation , 2008, Proceedings of the National Academy of Sciences.

[95]  Christopher T Walsh,et al.  Investigations of the MceIJ-catalyzed posttranslational modification of the microcin E492 C-terminus: linkage of ribosomal and nonribosomal peptides to form "trojan horse" antibiotics. , 2008, Biochemistry.

[96]  J. Sha,et al.  Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. , 2008, Microbial pathogenesis.

[97]  A. Sonenshein,et al.  Bile Salts and Glycine as Cogerminants for Clostridium difficile Spores , 2008, Journal of bacteriology.

[98]  D. Archambault,et al.  Capacity of Human Nisin- and Pediocin-Producing Lactic Acid Bacteria To Reduce Intestinal Colonization by Vancomycin-Resistant Enterococci , 2008, Applied and Environmental Microbiology.

[99]  D. Antonopoulos,et al.  Decreased diversity of the fecal Microbiome in recurrent Clostridium difficile-associated diarrhea. , 2008, The Journal of infectious diseases.

[100]  Carlene A. Muto,et al.  Antimicrobial-associated risk factors for Clostridium difficile infection. , 2008, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[101]  Paul S. Cohen,et al.  Comparison of Carbon Nutrition for Pathogenic and Commensal Escherichia coli Strains in the Mouse Intestine , 2008, Infection and Immunity.

[102]  M. Lacroix,et al.  Purification and identification of the pediocin produced by Pediococcus acidilactici MM33, a new human intestinal strain , 2007, Journal of applied microbiology.

[103]  Hiroshi Mori,et al.  Comparative Metagenomics Revealed Commonly Enriched Gene Sets in Human Gut Microbiomes , 2007, DNA research : an international journal for rapid publication of reports on genes and genomes.

[104]  Hannah M. Wexler,et al.  Bacteroides: the Good, the Bad, and the Nitty-Gritty , 2007, Clinical Microbiology Reviews.

[105]  G. Plitas,et al.  MyD88-mediated signals induce the bactericidal lectin RegIIIγ and protect mice against intestinal Listeria monocytogenes infection , 2007, The Journal of experimental medicine.

[106]  G. Zuccotti,et al.  Colonization, bloodstream infection, and mortality caused by vancomycin-resistant enterococcus early after allogeneic hematopoietic stem cell transplant. , 2007, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation.

[107]  Y. Ben-Neriah,et al.  Epithelial NF-κB maintains host gut microflora homeostasis , 2007, Nature Immunology.

[108]  C. Hill,et al.  Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118 , 2007, Proceedings of the National Academy of Sciences.

[109]  D. Archambault,et al.  Partial characterization of bacteriocins produced by human Lactococcus lactis and Pediococccus acidilactici isolates , 2007, Journal of applied microbiology.

[110]  Y. Ben-Neriah,et al.  Epithelial NF-kappaB maintains host gut microflora homeostasis. , 2007, Nature immunology.

[111]  S. Mazmanian,et al.  The love–hate relationship between bacterial polysaccharides and the host immune system , 2006, Nature Reviews Immunology.

[112]  L. Hooper,et al.  Symbiotic Bacteria Direct Expression of an Intestinal Bactericidal Lectin , 2006, Science.

[113]  Ruslan Medzhitov,et al.  Role of toll-like receptors in spontaneous commensal-dependent colitis. , 2006, Immunity.

[114]  M. Pop,et al.  Metagenomic Analysis of the Human Distal Gut Microbiome , 2006, Science.

[115]  J. Parkhill,et al.  Multireplicon genome architecture of Lactobacillus salivarius. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[116]  Hening Lin,et al.  How pathogenic bacteria evade mammalian sabotage in the battle for iron , 2006, Nature chemical biology.

[117]  Dae-Joong Kang,et al.  Bile salt biotransformations by human intestinal bacteria Published, JLR Papers in Press, November 18, 2005. , 2006, Journal of Lipid Research.

[118]  V. Gonçalves,et al.  Comparative study of clinical characteristics of neutropenic and non-neutropenic adult cancer patients with bloodstream infections , 2006, European Journal of Clinical Microbiology and Infectious Diseases.

[119]  Stuart Johnson,et al.  An epidemic, toxin gene-variant strain of Clostridium difficile. , 2005, The New England journal of medicine.

[120]  C. Matuchansky,et al.  Review article: bifidobacteria as probiotic agents – physiological effects and clinical benefits , 2005, Alimentary pharmacology & therapeutics.

[121]  M. Selsted,et al.  Mammalian defensins in the antimicrobial immune response , 2005, Nature Immunology.

[122]  G. Papanicolaou,et al.  Pre‐ and post‐engraftment bloodstream infection rates and associated mortality in allogeneic hematopoietic stem cell transplant recipients , 2005, Transplant infectious disease : an official journal of the Transplantation Society.

[123]  K. Brogden Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? , 2005, Nature Reviews Microbiology.

[124]  Richard A. Flavell,et al.  Nod2-Dependent Regulation of Innate and Adaptive Immunity in the Intestinal Tract , 2005, Science.

[125]  Yanping Wang,et al.  Human intestinal bacteria as reservoirs for antibiotic resistance genes. , 2004, Trends in microbiology.

[126]  Ruslan Medzhitov,et al.  Recognition of Commensal Microflora by Toll-Like Receptors Is Required for Intestinal Homeostasis , 2004, Cell.

[127]  S. Sonis The pathobiology of mucositis , 2004, Nature Reviews Cancer.

[128]  E. Vimr,et al.  Diversity of Microbial Sialic Acid Metabolism , 2004, Microbiology and Molecular Biology Reviews.

[129]  W. Kenealy,et al.  Studies on the substrate range of Clostridium kluyveri; the use of propanol and succinate , 1985, Archives of Microbiology.

[130]  K. Hantke,et al.  The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. , 2003, Microbiology.

[131]  Jeffrey I. Gordon,et al.  Angiogenins: a new class of microbicidal proteins involved in innate immunity , 2003, Nature Immunology.

[132]  S. Normark,et al.  Germ-free and Colonized Mice Generate the Same Products from Enteric Prodefensins* , 2000, The Journal of Biological Chemistry.

[133]  D. Milligan,et al.  Clostridium difficile infection in allogeneic stem cell transplant recipients is associated with severe graft-versus-host disease and non-relapse mortality , 2000, Bone Marrow Transplantation.

[134]  K. Matsuzaki Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. , 1999, Biochimica et biophysica acta.

[135]  J. K. Collins,et al.  Selection of Probiotic Strains for Human Applications , 1998 .

[136]  D. Gerding,et al.  Clostridium difficile--associated diarrhea. , 1998, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[137]  K. Tanimoto,et al.  Cloning and genetic and sequence analyses of the bacteriocin 21 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pPD1 , 1997, Journal of bacteriology.

[138]  P. Lawson,et al.  The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. , 1994, International journal of systematic bacteriology.

[139]  A. Brown,et al.  The changing epidemiology of infections at cancer hospitals. , 1993, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[140]  W. Kenealy,et al.  Dehydrogenases involved in the conversion of succinate to 4-hydroxybutanoate by Clostridium kluyveri , 1993, Applied and environmental microbiology.

[141]  J. Rask-Madsen,et al.  BACTERIOTHERAPY FOR CHRONIC RELAPSING CLOSTRIDIUM DIFFICILE DIARRHOEA IN SIX PATIENTS , 1989, The Lancet.

[142]  M. Tvede,et al.  Bacteriotherapy for chronic relapsing Clostridium difficile in six patients , 1989 .

[143]  D. van der Waaij,et al.  Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. , 1971 .

[144]  D. van der Waaij,et al.  Colonization resistance of the digestive tract in conventional and antibiotic-treated mice , 1971, Journal of Hygiene.

[145]  R. Curtiss,et al.  Genetic Exchange Between Escherichia coli Strains in the Mouse Intestine , 1970, Journal of bacteriology.

[146]  M. Bohnhoff,et al.  RESISTANCE OF THE MOUSE'S INTESTINAL TRACT TO EXPERIMENTAL SALMONELLA INFECTION , 1964, The Journal of experimental medicine.

[147]  M. Bohnhoff,et al.  Effect of Streptomycin on Susceptibility of Intestinal Tract to Experimental Salmonella Infection.∗ , 1954, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.