On graphs with a given endomorphism monoid

Hedrlín and Pultr proved that for any monoid M there exists a graph G with endomorphism monoid isomorphic to M. In this paper we give a construction G(M) for a graph with prescribed endomorphism monoid M. Using this construction we derive bounds on the minimum number of vertices and edges required to produce a graph with a given endomorphism monoid for various classes of finite monoids. For example we show that for every monoid M, |M|=m there is a graph G with End(G)≃M and |E(G)|≤(1 + 0(1))m2. This is, up to a factor of 1/2, best possible since there are monoids requiring a graph with \documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document}\begin{eqnarray*} && \frac{m^{2}}{2}(1 -0(1)) \end{eqnarray*}\end{document} edges.

[1]  Vojtech Rödl,et al.  On the number of graphs with a given endomorphism monoid , 2010, Discret. Math..

[2]  D. West Introduction to Graph Theory , 1995 .

[3]  Peter M. Higgins,et al.  Techniques of semigroup theory , 1991 .

[4]  V. Rödl,et al.  Note on the number of monoids of order $n$ , 1985 .

[5]  Vojtech Rödl,et al.  On the minimum order of graphs with given semigroup , 1984, J. Comb. Theory, Ser. B.

[6]  L. Babai Combinatorics: On the abstract group of automorphisms , 1981 .

[7]  A. Pultr,et al.  Combinatorial, algebraic, and topological representations of groups, semigroups, and categories , 1980 .

[8]  Bolyai János Matematikai Társulat,et al.  Algebraic theory of semigroups , 1979 .

[9]  Daniel J. Kleitman,et al.  The number of semigroups of order n , 1976 .

[10]  László Babai,et al.  On the Minimum Order of Graphs with Given Group , 1974, Canadian Mathematical Bulletin.

[11]  Mario Petrich,et al.  Introduction to semigroups , 1973 .

[12]  J. Gerhard Some subdirectly irreducible idempotent semigroups , 1972 .

[13]  Z. Hedrlín,et al.  On reconstruction of monoids from their table fragments , 1971 .

[14]  Pavol Hell,et al.  Graphs and k-Societies , 1970, Canadian Mathematical Bulletin.

[15]  Z. Hedrlín,et al.  Symmetric relations (undirected graphs) with given semigroups , 1965 .

[16]  Z. Hedrlín,et al.  Relations (graphs) with given infinite semigroups , 1964 .

[17]  Z. Hedrlín,et al.  Relations (graphs) with given finitely generated semigroups , 1964 .

[18]  Jürgen Schmidt,et al.  Zum Cayleyschen Darstellungssatz , 1964 .

[19]  Aleš Pultr,et al.  Remark on topological spaces with given semigroups , 1963 .

[20]  R. Frucht Graphs of Degree Three with a Given Abstract Group , 1949, Canadian Journal of Mathematics.

[21]  R. Frucht Herstellung von Graphen mit vorgegebener abstrakter Gruppe , 1939 .