Computational analysis of phosphoproteomics: progresses and perspectives.

Phosphorylation is one of the most essential post-translational modifications (PTMs) of proteins, regulates a variety of cellular signaling pathways, and at least partially determines the biological diversity. Recent progresses in phosphoproteomics have identified more than 100,000 phosphorylation sites, while this number will easily exceed one million in the next decade. In this regard, how to extract useful information from flood of phosphoproteomics data has emerged as a great challenge. In this review, we summarized the leading edges on computational analysis of phosphoproteomics, including discovery of phosphorylation motifs from phosphoproteomics data, systematic modeling of phosphorylation network, analysis of genetic variation that influences phosphorylation, and phosphorylation evolution. Based on existed knowledge, we also raised several perspectives for further studies. We believe that integration of experimental and computational analyses will propel the phosphoproteomics research into a new phase.

[1]  Yoshio Tateno,et al.  Evolution of protein phosphorylation for distinct functional modules in vertebrate genomes. , 2011, Molecular biology and evolution.

[2]  Feng-Chi Chen,et al.  Phosphorylated and nonphosphorylated serine and threonine residues evolve at different rates in mammals. , 2010, Molecular biology and evolution.

[3]  Alan M. Moses,et al.  Moving from transcriptional to phospho-evolution: generalizing regulatory evolution? , 2010, Trends in genetics : TIG.

[4]  Feng Zhang,et al.  The Plk1-dependent Phosphoproteome of the Early Mitotic Spindle* , 2010, Molecular & Cellular Proteomics.

[5]  Alan M. Moses,et al.  Evolution of characterized phosphorylation sites in budding yeast. , 2010, Molecular biology and evolution.

[6]  Yu Xue,et al.  A summary of computational resources for protein phosphorylation. , 2010, Current protein & peptide science.

[7]  Florian Gnad,et al.  Evolutionary Constraints of Phosphorylation in Eukaryotes, Prokaryotes, and Mitochondria* , 2010, Molecular & Cellular Proteomics.

[8]  S. Gygi,et al.  Global phosphorylation analysis of β-arrestin–mediated signaling downstream of a seven transmembrane receptor (7TMR) , 2010, Proceedings of the National Academy of Sciences.

[9]  Diego Mauricio Riaño-Pachón,et al.  Proteome-wide survey of phosphorylation patterns affected by nuclear DNA polymorphisms in Arabidopsis thaliana , 2010, BMC Genomics.

[10]  Martin Klammer,et al.  Identifying differentially regulated subnetworks from phosphoproteomic data , 2010, BMC Bioinformatics.

[11]  Masaru Tomita,et al.  Towards the systematic discovery of signal transduction networks using phosphorylation dynamics data , 2010, BMC Bioinformatics.

[12]  Rune Linding,et al.  Roles of “junk phosphorylation” in modulating biomolecular association of phosphorylated proteins? , 2010, Cell cycle.

[13]  Yixue Li,et al.  Regulation of Cellular Metabolism by Protein Lysine Acetylation , 2010, Science.

[14]  Stephen G Oliver,et al.  Posttranslational regulation impacts the fate of duplicated genes , 2010, Proceedings of the National Academy of Sciences.

[15]  S. Brunak,et al.  Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis , 2010, Science Signaling.

[16]  Gary D Bader,et al.  NetPath: a public resource of curated signal transduction pathways , 2010, Genome Biology.

[17]  Craig D Wenger,et al.  Phosphoproteomics for the masses. , 2010, ACS chemical biology.

[18]  Zineng Yuan,et al.  PhosSNP for Systematic Analysis of Genetic Polymorphisms That Influence Protein Phosphorylation* , 2009, Molecular & Cellular Proteomics.

[19]  R. Linding,et al.  Experimental and computational tools useful for (re)construction of dynamic kinase–substrate networks , 2009, Proteomics.

[20]  S. Lemeer,et al.  The phosphoproteomics data explosion. , 2009, Current opinion in chemical biology.

[21]  Florian Gnad,et al.  High‐accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast , 2009, Proteomics.

[22]  S. Gygi,et al.  Global Analysis of Cdk1 Substrate Phosphorylation Sites Provides Insights into Evolution , 2009, Science.

[23]  Tony Pawson,et al.  Positive Selection of Tyrosine Loss in Metazoan Evolution , 2009, Science.

[24]  Jimmy K. Eng,et al.  Quantitative Phosphoproteomic Analysis of T Cell Receptor Signaling Reveals System-Wide Modulation of Protein-Protein Interactions , 2009, Science Signaling.

[25]  M. Mann,et al.  Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions , 2009, Science.

[26]  C. Mummery,et al.  Phosphorylation dynamics during early differentiation of human embryonic stem cells. , 2009, Cell stem cell.

[27]  L. Johnson The regulation of protein phosphorylation. , 2009, Biochemical Society transactions.

[28]  Tony Pawson,et al.  Comparative Analysis Reveals Conserved Protein Phosphorylation Networks Implicated in Multiple Diseases , 2009, Science Signaling.

[29]  Toby J. Gibson,et al.  Evidence for the Concerted Evolution between Short Linear Protein Motifs and Their Flanking Regions , 2009, PloS one.

[30]  Junjie Hou,et al.  Sequential phosphorylation of Nedd1 by Cdk1 and Plk1 is required for targeting of the γTuRC to the centrosome , 2009, Journal of Cell Science.

[31]  W. Lim,et al.  Evolution of Phosphoregulation: Comparison of Phosphorylation Patterns across Yeast Species , 2009, PLoS biology.

[32]  C. Landry,et al.  Weak functional constraints on phosphoproteomes. , 2009, Trends in genetics : TIG.

[33]  Masaru Tomita,et al.  In Silico Analysis of Phosphoproteome Data Suggests a Rich-get-richer Process of Phosphosite Accumulation over Evolution*S , 2009, Molecular & Cellular Proteomics.

[34]  Yixue Li,et al.  SysPTM: A Systematic Resource for Proteomic Research on Post-translational Modifications* , 2009, Molecular & Cellular Proteomics.

[35]  M. Stratton,et al.  The cancer genome , 2009, Nature.

[36]  T. Hunter Tyrosine phosphorylation: thirty years and counting. , 2009, Current opinion in cell biology.

[37]  N. C. Tedford,et al.  Quantitative analysis of cell signaling and drug action via mass spectrometry‐based systems level phosphoproteomics , 2009, Proteomics.

[38]  M. Larsen,et al.  Analytical strategies for phosphoproteomics , 2009, Expert review of neurotherapeutics.

[39]  George M. Church,et al.  Predicting Protein Post-translational Modifications Using Meta-analysis of Proteome Scale Data Sets*S , 2009, Molecular & Cellular Proteomics.

[40]  Avi Ma'ayan,et al.  KEA: kinase enrichment analysis , 2009, Bioinform..

[41]  Changjiang Jin,et al.  Proteome-wide prediction of PKA phosphorylation sites in eukaryotic kingdom. , 2008, Genomics.

[42]  Gregory Shakhnarovich,et al.  Discovery of phosphorylation motif mixtures in phosphoproteomics data , 2008, Bioinform..

[43]  Sanguthevar Rajasekaran,et al.  Minimotif miner 2nd release: a database and web system for motif search , 2008, Nucleic Acids Res..

[44]  F. Alt,et al.  Evolution of phosphorylation-dependent regulation of activation-induced cytidine deaminase. , 2008, Molecular cell.

[45]  Christian von Mering,et al.  STRING 8—a global view on proteins and their functional interactions in 630 organisms , 2008, Nucleic Acids Res..

[46]  Jos Boekhorst,et al.  Comparative phosphoproteomics reveals evolutionary and functional conservation of phosphorylation across eukaryotes , 2008, Genome Biology.

[47]  D. Armstrong,et al.  The human ERG1 channel polymorphism, K897T, creates a phosphorylation site that inhibits channel activity , 2008, Proceedings of the National Academy of Sciences.

[48]  P. Bork,et al.  Linear Motif Atlas for Phosphorylation-Dependent Signaling , 2008, Science Signaling.

[49]  Yu Xue,et al.  GPS 2.0, a Tool to Predict Kinase-specific Phosphorylation Sites in Hierarchy *S , 2008, Molecular & Cellular Proteomics.

[50]  Chi-Ying F. Huang,et al.  PhosphoPOINT: a comprehensive human kinase interactome and phospho-protein database , 2008, ECCB.

[51]  Rainer Malik,et al.  Comparative conservation analysis of the human mitotic phosphoproteome , 2008, Bioinform..

[52]  Kaizhong Zhang,et al.  Prediction of phosphotyrosine signaling networks using a scoring matrix-assisted ligand identification approach , 2008, Nucleic acids research.

[53]  Tony Pawson,et al.  Defining the Specificity Space of the Human Src Homology 2 Domain*S , 2008, Molecular & Cellular Proteomics.

[54]  M. Yaffe,et al.  Phosphoserine/Threonine Binding Domains , 2008 .

[55]  Julian Mintseris,et al.  Phosphoproteome analysis of Drosophila melanogaster embryos. , 2008, Journal of proteome research.

[56]  S. Gygi,et al.  Phosphoproteome analysis of fission yeast. , 2008, Journal of proteome research.

[57]  M. Mann,et al.  Phosphoproteome Analysis of E. coli Reveals Evolutionary Conservation of Bacterial Ser/Thr/Tyr Phosphorylation*S , 2008, Molecular & Cellular Proteomics.

[58]  R. Klemke,et al.  PhosphoBlast, a Computational Tool for Comparing Phosphoprotein Signatures among Large Datasets*S , 2008, Molecular & Cellular Proteomics.

[59]  Nikolaj Blom,et al.  Motif Decomposition of the Phosphotyrosine Proteome Reveals a New N-terminal Binding Motif for SHIP2*S , 2008, Molecular & Cellular Proteomics.

[60]  Qi Zhu,et al.  PepCyber:P∼PEP: a database of human protein–protein interactions mediated by phosphoprotein-binding domains , 2007, Nucleic Acids Res..

[61]  M. Mann,et al.  PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites , 2007, Genome Biology.

[62]  Richard Durbin,et al.  Regulatory evolution in proteins by turnover and lineage-specific changes of cyclin-dependent kinase consensus sites , 2007, Proceedings of the National Academy of Sciences.

[63]  Tony Pawson,et al.  NetworKIN: a resource for exploring cellular phosphorylation networks , 2007, Nucleic Acids Res..

[64]  Allegra Via,et al.  Phospho.ELM: a database of phosphorylation sites—update 2008 , 2007, Nucleic Acids Res..

[65]  Terry Gaasterland,et al.  Prediction of Cyclin-Dependent Kinase Phosphorylation Substrates , 2007, PloS one.

[66]  E. Kritikou,et al.  Cell signalling: The power of NetworKIN , 2007, Nature Reviews Molecular Cell Biology.

[67]  P. Bork,et al.  Evolution of Cell Cycle Control: Same Molecular Machines, Different Regulation , 2007, Cell cycle.

[68]  J. Ferrell,et al.  Mechanisms of specificity in protein phosphorylation , 2007, Nature Reviews Molecular Cell Biology.

[69]  Nicole Rusk NetworKIN in context—casting a net for kinases , 2007, Nature Methods.

[70]  P. Bork,et al.  Systematic Discovery of In Vivo Phosphorylation Networks , 2007, Cell.

[71]  B. A. Ballif,et al.  ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage , 2007, Science.

[72]  D. Haber,et al.  Cancer: Drivers and passengers , 2007, Nature.

[73]  S. Mathivanan,et al.  A curated compendium of phosphorylation motifs , 2007, Nature Biotechnology.

[74]  Steven P. Gygi,et al.  Large-scale phosphorylation analysis of mouse liver , 2007, Proceedings of the National Academy of Sciences.

[75]  Scott A Gerber,et al.  Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae. , 2007, Journal of proteome research.

[76]  M. Mann,et al.  Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks , 2006, Cell.

[77]  P. Bork,et al.  Co-evolution of transcriptional and post-translational cell-cycle regulation , 2006, Nature.

[78]  S. Gammeltoft,et al.  Phosphoproteomics toolbox: Computational biology, protein chemistry and mass spectrometry , 2006, FEBS letters.

[79]  S. Gygi,et al.  Identification of 14-3-3ε substrates from embryonic murine brain , 2006 .

[80]  T. Pawson,et al.  Reading protein modifications with interaction domains , 2006, Nature Reviews Molecular Cell Biology.

[81]  D. Armstrong,et al.  Cyclosporin and Timothy syndrome increase mode 2 gating of CaV1.2 calcium channels through aberrant phosphorylation of S6 helices. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[82]  J. H. Shinn,et al.  Minimotif Miner: a tool for investigating protein function , 2006, Nature Methods.

[83]  Bostjan Kobe,et al.  Protein kinases associated with the yeast phosphoproteome , 2006, BMC Bioinformatics.

[84]  Bostjan Kobe,et al.  Substrate specificity of protein kinases and computational prediction of substrates. , 2005, Biochimica et biophysica acta.

[85]  K. S. Deshpande,et al.  Human protein reference database—2006 update , 2005, Nucleic Acids Res..

[86]  S. Gygi,et al.  An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets , 2005, Nature Biotechnology.

[87]  T. Pawson,et al.  Protein phosphorylation in signaling--50 years and counting. , 2005, Trends in biochemical sciences.

[88]  Steven P. Gygi,et al.  A Proteomic Strategy for Gaining Insights into Protein Sumoylation in Yeast*S , 2005, Molecular & Cellular Proteomics.

[89]  Erin K O'Shea,et al.  Identification of Sumoylated Proteins by Systematic Immunoprecipitation of the Budding Yeast Proteome* , 2005, Molecular & Cellular Proteomics.

[90]  Guozhi Zhu,et al.  Protein Kinase Specificity: A Strategic Collaboration between Kinase Peptide Specificity and Substrate Recruitment , 2005, Cell cycle.

[91]  Bruce Tidor,et al.  A computational method for the analysis and prediction of protein:phosphopeptide‐binding sites , 2005, Protein science : a publication of the Protein Society.

[92]  Steven P Gygi,et al.  Phosphoproteomic Analysis of the Developing Mouse Brain*S , 2004, Molecular & Cellular Proteomics.

[93]  Steven P Gygi,et al.  Large-scale characterization of HeLa cell nuclear phosphoproteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[94]  N. Blom,et al.  Prediction of post‐translational glycosylation and phosphorylation of proteins from the amino acid sequence , 2004, Proteomics.

[95]  Tony Pawson,et al.  Specificity in Signal Transduction From Phosphotyrosine-SH2 Domain Interactions to Complex Cellular Systems , 2004, Cell.

[96]  Michael B Yaffe,et al.  BRCT Repeats As Phosphopeptide-Binding Modules Involved in Protein Targeting , 2003, Science.

[97]  Steven P Gygi,et al.  A proteomics approach to understanding protein ubiquitination , 2003, Nature Biotechnology.

[98]  Michael B. Yaffe,et al.  Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs , 2003, Nucleic Acids Res..

[99]  Ricardo M Biondi,et al.  Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. , 2003, The Biochemical journal.

[100]  T. Hunter,et al.  The Protein Kinase Complement of the Human Genome , 2002, Science.

[101]  M. Yaffe Phosphotyrosine-binding domains in signal transduction , 2002, Nature Reviews Molecular Cell Biology.

[102]  M. Yaffe,et al.  A motif-based profile scanning approach for genome-wide prediction of signaling pathways , 2001, Nature Biotechnology.

[103]  M. Yaffe,et al.  Phosphoserine/threonine-binding domains. , 2001, Current opinion in cell biology.

[104]  P. Cohen,et al.  The regulation of protein function by multisite phosphorylation--a 25 year update. , 2000, Trends in biochemical sciences.

[105]  Jonathan A. Cooper,et al.  Protein modification: Docking sites for kinases , 1999, Current Biology.

[106]  Zhou Songyang,et al.  Determination of the Specific Substrate Sequence Motifs of Protein Kinase C Isozymes* , 1997, The Journal of Biological Chemistry.

[107]  L. Pinna,et al.  How do protein kinases recognize their substrates? , 1996, Biochimica et biophysica acta.

[108]  T. Soderling,et al.  A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1 , 1996, Molecular and cellular biology.

[109]  Lilia M. Iakoucheva,et al.  Loss of Post-Translational Modification Sites in Disease , 2010, Pacific Symposium on Biocomputing.

[110]  J. Qian,et al.  Understanding protein phosphorylation on a systems level. , 2010, Briefings in functional genomics.

[111]  M. Ye,et al.  Reversed-phase-reversed-phase liquid chromatography approach with high orthogonality for multidimensional separation of phosphopeptides. , 2010, Analytical chemistry.

[112]  N. Schork,et al.  Kinase mutations in human disease: interpreting genotype–phenotype relationships , 2010, Nature Reviews Genetics.

[113]  M. Metzker Sequencing technologies — the next generation , 2010, Nature Reviews Genetics.

[114]  Nikolaj Blom,et al.  Kinase-specific prediction of protein phosphorylation sites. , 2009, Methods in molecular biology.

[115]  Robin E C Lee,et al.  Reconstructing regulatory kinase pathways from phosphopeptide data: a bioinformatics approach. , 2009, Methods in molecular biology.

[116]  Rune Linding,et al.  Directional and quantitative phosphorylation networks. , 2008, Briefings in functional genomics & proteomics.

[117]  S. Gygi,et al.  Large-scale identification and evolution indexing of tyrosine phosphorylation sites from murine brain. , 2008, Journal of proteome research.

[118]  T. Pawson,et al.  Network medicine , 2008, FEBS letters.

[119]  S. Gygi,et al.  Identification of 14-3-3epsilon substrates from embryonic murine brain. , 2006, Journal of proteome research.

[120]  Jay Snoddy,et al.  BMC Bioinformatics BioMed Central Database , 2004 .

[121]  Nikolaj Blom,et al.  PhosphoBase, a database of phosphorylation sites: release 2.0 , 1999, Nucleic Acids Res..

[122]  Predrag Radivojac,et al.  Gain and Loss of Phosphorylation Sites in Human Cancer , 2022 .