Hard SAT and CSP instances with Expander Graphs
暂无分享,去创建一个
Carlos Ansótegui | Ramón Béjar | Cèsar Fernández | Carles Mateu | R. Béjar | C. Ansótegui | C. Fernández | Carles Mateu
[1] Brendan D. McKay,et al. Short Cycles in Random Regular Graphs , 2004, Electron. J. Comb..
[2] Joel Friedman,et al. A proof of Alon's second eigenvalue conjecture and related problems , 2004, ArXiv.
[3] Chu Min Li,et al. Look-Ahead Versus Look-Back for Satisfiability Problems , 1997, CP.
[4] Toby Walsh,et al. Random Constraint Satisfaction: Flaws and Structure , 2004, Constraints.
[5] José M. F. Moura,et al. Ramanujan Topologies for Decision Making in Sensor Networks , 2006 .
[6] Eli Ben-Sasson,et al. Short proofs are narrow—resolution made simple , 2001, JACM.
[7] Bart Selman,et al. Regular Random k-SAT: Properties of Balanced Formulas , 2005, Journal of Automated Reasoning.
[8] C. R. Subramanian,et al. A spectral lower bound for the treewidth of a graph and its consequences , 2003, Inf. Process. Lett..
[9] L. Sunil Chandran. A High Girth Graph Construction , 2003, SIAM J. Discret. Math..
[10] Roberto J. Bayardo,et al. Using CSP Look-Back Techniques to Solve Exceptionally Hard SAT Instances , 1996, CP.
[11] Bart Selman,et al. Balance and Filtering in Structured Satisfiable Problems , 2001, IJCAI.
[12] M. Murty. Ramanujan Graphs , 1965 .
[13] Niklas Sörensson,et al. An Extensible SAT-solver , 2003, SAT.
[14] Ke Xu,et al. A Simple Model to Generate Hard Satisfiable Instances , 2005, IJCAI.
[15] Phokion G. Kolaitis,et al. A Game-Theoretic Approach to Constraint Satisfaction , 2000, AAAI/IAAI.
[16] Bart Selman,et al. Noise Strategies for Improving Local Search , 1994, AAAI.
[17] Ian P. Gent,et al. Watched Literals for Constraint Propagation in Minion , 2006, CP.
[18] Martin E. Dyer,et al. Locating the Phase Transition in Binary Constraint Satisfaction Problems , 1996, Artif. Intell..
[19] Phokion G. Kolaitis,et al. On the expressive power of datalog: tools and a case study , 1990, J. Comput. Syst. Sci..
[20] F. Chung. On concentrators, superconcentrators, generalizers, and nonblocking networks , 1979, The Bell System Technical Journal.
[21] Giuliana P. Davidoff,et al. Elementary number theory, group theory, and Ramanujan graphs , 2003 .
[22] WigdersonAvi,et al. Short proofs are narrowresolution made simple , 2001 .
[23] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[24] Joel Friedman,et al. A proof of Alon's second eigenvalue conjecture and related problems , 2004, ArXiv.
[25] Gilles Dequen,et al. A backbone-search heuristic for efficient solving of hard 3-SAT formulae , 2001, IJCAI.
[26] Yannis C. Stamatiou,et al. Random Constraint Satisfaction a More Accurate Picture , 2022 .
[27] Carlos Ansótegui,et al. On Balanced CSPs with High Treewidth , 2007, AAAI.
[28] Albert Atserias,et al. On sufficient conditions for unsatisfiability of random formulas , 2004, JACM.
[29] Alexander Schrijver,et al. Discrete mathematics and optimization , 2004 .
[30] Oliver Vornberger,et al. The Complexity of Testing Whether a Graph is a Superconcentrator , 1981, Inf. Process. Lett..
[31] R. M. Tanner. Explicit Concentrators from Generalized N-Gons , 1984 .
[32] Michael Alekhnovich,et al. Lower bounds for polynomial calculus: non-binomial case , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.
[33] U. Feige,et al. Spectral Graph Theory , 2015 .
[34] D. Spielman,et al. Expander codes , 1996 .
[35] Nabil Kahale,et al. Eigenvalues and expansion of regular graphs , 1995, JACM.
[36] Kristin E. Lauter,et al. Cryptographic Hash Functions from Expander Graphs , 2008, Journal of Cryptology.
[37] F. Chung. Laplacians of graphs and Cheeger inequalities , 1993 .
[38] Béla Bollobás,et al. Random Graphs , 1985 .