Hard SAT and CSP instances with Expander Graphs

In this paper we provide a new method to generate hard k-SAT instances. Basically, we construct the bipartite incidence graph of a k-SAT instance where the left side represents the clauses and the right side represents the literals of our Boolean formula. Then, the clauses are filled by incrementally connecting both sides while keeping the girth of the graph as high as possible. That assures that the expansion of the graph is also high. It has been shown that high expansion implies high resolution width w. The resolution width characterizes the hardness of an instance F of n variables since if every resolution refutation of F has width w then every resolution refutation requires size 2 2/n). We have extended this approach to generate hard n-ary CSP instances. The experimental investigation conducted on complete and incomplete solvers confirms that the expansion of the graph is indeed a key factor in order to obtain harder instances than other approaches.

[1]  Brendan D. McKay,et al.  Short Cycles in Random Regular Graphs , 2004, Electron. J. Comb..

[2]  Joel Friedman,et al.  A proof of Alon's second eigenvalue conjecture and related problems , 2004, ArXiv.

[3]  Chu Min Li,et al.  Look-Ahead Versus Look-Back for Satisfiability Problems , 1997, CP.

[4]  Toby Walsh,et al.  Random Constraint Satisfaction: Flaws and Structure , 2004, Constraints.

[5]  José M. F. Moura,et al.  Ramanujan Topologies for Decision Making in Sensor Networks , 2006 .

[6]  Eli Ben-Sasson,et al.  Short proofs are narrow—resolution made simple , 2001, JACM.

[7]  Bart Selman,et al.  Regular Random k-SAT: Properties of Balanced Formulas , 2005, Journal of Automated Reasoning.

[8]  C. R. Subramanian,et al.  A spectral lower bound for the treewidth of a graph and its consequences , 2003, Inf. Process. Lett..

[9]  L. Sunil Chandran A High Girth Graph Construction , 2003, SIAM J. Discret. Math..

[10]  Roberto J. Bayardo,et al.  Using CSP Look-Back Techniques to Solve Exceptionally Hard SAT Instances , 1996, CP.

[11]  Bart Selman,et al.  Balance and Filtering in Structured Satisfiable Problems , 2001, IJCAI.

[12]  M. Murty Ramanujan Graphs , 1965 .

[13]  Niklas Sörensson,et al.  An Extensible SAT-solver , 2003, SAT.

[14]  Ke Xu,et al.  A Simple Model to Generate Hard Satisfiable Instances , 2005, IJCAI.

[15]  Phokion G. Kolaitis,et al.  A Game-Theoretic Approach to Constraint Satisfaction , 2000, AAAI/IAAI.

[16]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[17]  Ian P. Gent,et al.  Watched Literals for Constraint Propagation in Minion , 2006, CP.

[18]  Martin E. Dyer,et al.  Locating the Phase Transition in Binary Constraint Satisfaction Problems , 1996, Artif. Intell..

[19]  Phokion G. Kolaitis,et al.  On the expressive power of datalog: tools and a case study , 1990, J. Comput. Syst. Sci..

[20]  F. Chung On concentrators, superconcentrators, generalizers, and nonblocking networks , 1979, The Bell System Technical Journal.

[21]  Giuliana P. Davidoff,et al.  Elementary number theory, group theory, and Ramanujan graphs , 2003 .

[22]  WigdersonAvi,et al.  Short proofs are narrowresolution made simple , 2001 .

[23]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[24]  Joel Friedman,et al.  A proof of Alon's second eigenvalue conjecture and related problems , 2004, ArXiv.

[25]  Gilles Dequen,et al.  A backbone-search heuristic for efficient solving of hard 3-SAT formulae , 2001, IJCAI.

[26]  Yannis C. Stamatiou,et al.  Random Constraint Satisfaction a More Accurate Picture , 2022 .

[27]  Carlos Ansótegui,et al.  On Balanced CSPs with High Treewidth , 2007, AAAI.

[28]  Albert Atserias,et al.  On sufficient conditions for unsatisfiability of random formulas , 2004, JACM.

[29]  Alexander Schrijver,et al.  Discrete mathematics and optimization , 2004 .

[30]  Oliver Vornberger,et al.  The Complexity of Testing Whether a Graph is a Superconcentrator , 1981, Inf. Process. Lett..

[31]  R. M. Tanner Explicit Concentrators from Generalized N-Gons , 1984 .

[32]  Michael Alekhnovich,et al.  Lower bounds for polynomial calculus: non-binomial case , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[33]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[34]  D. Spielman,et al.  Expander codes , 1996 .

[35]  Nabil Kahale,et al.  Eigenvalues and expansion of regular graphs , 1995, JACM.

[36]  Kristin E. Lauter,et al.  Cryptographic Hash Functions from Expander Graphs , 2008, Journal of Cryptology.

[37]  F. Chung Laplacians of graphs and Cheeger inequalities , 1993 .

[38]  Béla Bollobás,et al.  Random Graphs , 1985 .