SATTVA: SpArsiTy inspired classificaTion of malware VAriants
暂无分享,去创建一个
[1] Antonio Torralba,et al. Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.
[2] Jack W. Stokes,et al. Large-scale malware classification using random projections and neural networks , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
[3] Christopher Krügel,et al. A Static, Packer-Agnostic Filter to Detect Similar Malware Samples , 2012, DIMVA.
[4] Vlado Keselj,et al. N-gram-based detection of new malicious code , 2004, Proceedings of the 28th Annual International Computer Software and Applications Conference, 2004. COMPSAC 2004..
[5] Peng Li,et al. On Challenges in Evaluating Malware Clustering , 2010, RAID.
[6] B. S. Manjunath,et al. Malware images: visualization and automatic classification , 2011, VizSec '11.
[7] Alexander Ilin,et al. Methodology for Behavioral-based Malware Analysis and Detection Using Random Projections and K-Nearest Neighbors Classifiers , 2011, 2011 Seventh International Conference on Computational Intelligence and Security.
[8] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[9] Gary Carpenter. 동적 사용자를 위한 Scalable 인증 그룹 키 교환 프로토콜 , 2005 .
[10] Carsten Willems,et al. Automatic analysis of malware behavior using machine learning , 2011, J. Comput. Secur..
[11] Wenke Lee,et al. McBoost: Boosting Scalability in Malware Collection and Analysis Using Statistical Classification of Executables , 2008, 2008 Annual Computer Security Applications Conference (ACSAC).
[12] Vinod Yegneswaran,et al. A comparative assessment of malware classification using binary texture analysis and dynamic analysis , 2011, AISec '11.
[13] Marcus A. Maloof,et al. Learning to Detect and Classify Malicious Executables in the Wild , 2006, J. Mach. Learn. Res..
[14] Lakshmanan Nataraj,et al. SARVAM : Search And RetrieVAl of Malware , 2013 .
[15] David Brumley,et al. BitShred: feature hashing malware for scalable triage and semantic analysis , 2011, CCS '11.
[16] B. S. Manjunath,et al. SigMal: a static signal processing based malware triage , 2013, ACSAC.
[17] Andrew Walenstein,et al. VILO: a rapid learning nearest-neighbor classifier for malware triage , 2013, Journal of Computer Virology and Hacking Techniques.
[18] Kang G. Shin,et al. Large-scale malware indexing using function-call graphs , 2009, CCS.
[19] Joel A. Tropp,et al. Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.
[20] Volkan Cevher,et al. Compressive Sensing for Background Subtraction , 2008, ECCV.
[21] D. Donoho,et al. Counting faces of randomly-projected polytopes when the projection radically lowers dimension , 2006, math/0607364.
[22] Georg Wicherski,et al. peHash: A Novel Approach to Fast Malware Clustering , 2009, LEET.
[23] Allen Y. Yang,et al. Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[24] Christopher Krügel,et al. Scalable, Behavior-Based Malware Clustering , 2009, NDSS.
[25] Haibin Ling,et al. Robust Visual Tracking and Vehicle Classification via Sparse Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[26] Jesse D. Kornblum. Identifying almost identical files using context triggered piecewise hashing , 2006, Digit. Investig..
[27] Andrew Walenstein,et al. Malware phylogeny generation using permutations of code , 2005, Journal in Computer Virology.
[28] Christopher Krügel,et al. Polymorphic Worm Detection Using Structural Information of Executables , 2005, RAID.
[29] Rama Chellappa,et al. Secure and Robust Iris Recognition Using Random Projections and Sparse Representations , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.