Study of instrument temperature effect on MODIS thermal emissive band responses

The Moderate Resolution Imaging Spectroradiometer (MODIS) has 16 thermal emissive bands (TEB) over a spectral range from mid-wave infrared (MWIR) to long-wave infrared (LWIR), using photovoltaic (PV) HgCdTe detectors for bands 20-25 and 27-30 with wavelengths from 3.75μm to 9.73μm and photoconductive (PC) HgCdTe detectors for bands 31-36 with wavelengths from 11.0μm to 14.2μm. A total of 160 individual detectors, 10 per band, are distributed on the short- and mid-wave (SMIR) and LWIR cold focal-plane assemblies (CFPA) with temperature controlled at 83K. The instrument temperature affects the detector response and this effect varies with the detector type. Detector responses from on-orbit calibration and pre-launch measurements have been examined to characterize this effect. Results from this analysis show that, for the PV detectors on the SMIR CFPA, the detector responses (gains) increase with instrument temperature whereas the PC detector responses decrease with the instrument temperature. The calibration impact due to on-orbit changes in instrument temperatures is examined. On-orbit detector offset and nonlinear response characterization obtained from the on-boar blackbody (BB) warm-up and cool-down (WUCD) cycle is discussed. This investigation was performed for both Terra MODIS and Aqua MODIS.