Locally Generated ULF Waves in the Martian Magnetosphere: MAVEN Observations

We investigate Martian ultralow frequency (ULF) electromagnetic waves generated by local plasma instabilities below the Martian bow shock. Recent Mars Atmosphere and Volatile EvolutioN (MAVEN) observations have shown that ULF waves generated upstream of the Martian bow shock can propagate down to the upper ionosphere, possibly facilitating heavy ion escape from Mars by heating the ionospheric plasma. In contrast to the upstream waves oscillating near the upstream proton cyclotron frequency, we identify narrow band ULF magnetic field fluctuations with frequencies near the local proton cyclotron frequency (fcp(local)) from MAVEN data. In addition to expected proton cyclotron waves locally generated in the magnetosheath, we newly identify compressional narrow band emissions near fcp(local) (and its harmonics for some cases) in the dayside upper ionosphere and in the nightside magnetotail. The dayside waves are preferentially observed for high solar extreme ultraviolet (EUV) conditions and are often associated with ring/shell‐like, hot protons of magnetosheath origin in the presence of cold, dense ionospheric protons. The nightside waves exhibit distinct preference for high‐solar‐EUV, strong‐solar‐wind conditions, under which both warm and cold protons are enhanced. The observed properties of these compressional waves are generally consistent with a proton Bernstein mode instability driven by a positive perpendicular slope in proton velocity distribution functions. The excited waves can cause perpendicular heating of thermal protons, thereby transferring energy from precipitating hot protons to cold ionospheric protons.

[1]  B. Jakosky,et al.  Solar Wind induced waves in the skies of Mars: Ionospheric compression, energization, and escape resulting from the impact of ultra-low frequency magnetosonic waves generated upstream of the Martian bow shock , 2020 .

[2]  C. Russell,et al.  Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time , 2018, Icarus.

[3]  B. Jakosky,et al.  Solar Wind Induced Waves in the Skies of Mars: Ionospheric Compression, Energization, and Escape Resulting From the Impact of Ultralow Frequency Magnetosonic Waves Generated Upstream of the Martian Bow Shock , 2018, Journal of Geophysical Research: Space Physics.

[4]  O. Santolík,et al.  Wave Polarization Analyzed by Singular Value Decomposition of the Spectral Matrix in the Presence of Noise , 2018, Surveys in Geophysics.

[5]  J. Espley The Martian Magnetosphere: Areas of Unsettled Terminology , 2018, Journal of Geophysical Research: Space Physics.

[6]  B. Jakosky,et al.  The Twisted Configuration of the Martian Magnetotail: MAVEN Observations , 2018 .

[7]  B. Jakosky,et al.  MAVEN Observations of Solar Wind‐Driven Magnetosonic Waves Heating the Martian Dayside Ionosphere , 2018 .

[8]  B. Jakosky,et al.  Flows, Fields, and Forces in the Mars‐Solar Wind Interaction , 2017 .

[9]  B. Jakosky,et al.  Ion Heating in the Martian Ionosphere , 2017 .

[10]  D. Mitchell,et al.  Characterization of Low‐Altitude Nightside Martian Magnetic Topology Using Electron Pitch Angle Distributions , 2017 .

[11]  S. Barabash,et al.  Global Mars‐solar wind coupling and ion escape , 2017 .

[12]  B. Jakosky,et al.  Effects of solar irradiance on the upper ionosphere and oxygen ion escape at Mars: MAVEN observations , 2017 .

[13]  V. Angelopoulos,et al.  Mars's magnetotail: Nature's current sheet laboratory , 2017 .

[14]  B. Jakosky,et al.  Structure, dynamics, and seasonal variability of the Mars‐solar wind interaction: MAVEN Solar Wind Ion Analyzer in‐flight performance and science results , 2017 .

[15]  B. Jakosky,et al.  Proton cyclotron waves occurrence rate upstream from Mars observed by MAVEN: Associated variability of the Martian upper atmosphere , 2016 .

[16]  B. Jakosky,et al.  MAVEN observations of electron‐induced whistler mode waves in the Martian magnetosphere , 2016 .

[17]  B. Jakosky,et al.  MAVEN observations of partially developed Kelvin‐Helmholtz vortices at Mars , 2016 .

[18]  B. Jakosky,et al.  MAVEN observation of an obliquely propagating low‐frequency wave upstream of Mars , 2016 .

[19]  J. Rouzaud,et al.  The MAVEN Solar Wind Electron Analyzer , 2016 .

[20]  E. Dubinin,et al.  Ultra‐Low‐Frequency Waves at Venus and Mars , 2016 .

[21]  Bruce M. Jakosky,et al.  The Solar Wind Ion Analyzer for MAVEN , 2015 .

[22]  B. Jakosky,et al.  MAVEN SupraThermal and Thermal Ion Compostion (STATIC) Instrument , 2015 .

[23]  Takuya Hara,et al.  Marsward and tailward ions in the near‐Mars magnetotail: MAVEN observations , 2015 .

[24]  B. Jakosky,et al.  Time‐dispersed ion signatures observed in the Martian magnetosphere by MAVEN , 2015 .

[25]  B. Jakosky,et al.  Low‐frequency waves in the Martian magnetosphere and their response to upstream solar wind driving conditions , 2015 .

[26]  T. Woods,et al.  The Solar Extreme Ultraviolet Monitor for MAVEN , 2015 .

[27]  G. Reeves,et al.  Low‐harmonic magnetosonic waves observed by the Van Allen Probes , 2015 .

[28]  J. Connerney,et al.  The MAVEN Magnetic Field Investigation , 2015 .

[29]  B. Anderson,et al.  Interpreting ~1 Hz magnetic compressional waves in Mercury's inner magnetosphere in terms of propagating ion‐Bernstein waves , 2015 .

[30]  S. Barabash,et al.  A statistical study of proton precipitation onto the Martian upper atmosphere: Mars Express observations , 2013 .

[31]  M. Kelley,et al.  The Mars Atmosphere and Volatile Evolution (MAVEN) Mission , 2013 .

[32]  N. Romanelli,et al.  Proton cyclotron waves upstream from Mars: Observations from Mars Global Surveyor , 2013, 1302.3312.

[33]  S. Solomon,et al.  Survey of coherent 1 Hz waves in Mercury's inner magnetosphere from MESSENGER observations , 2012 .

[34]  S. Barabash,et al.  Hybrid simulations of proton precipitation patterns onto the upper atmosphere of Mars , 2012, Earth, Planets and Space.

[35]  F. Duru,et al.  Ion Energization and Escape on Mars and Venus , 2011 .

[36]  R. Lundin Ion Acceleration and Outflow from Mars and Venus: An Overview , 2011 .

[37]  S. Gary,et al.  Bernstein instability driven by suprathermal protons in the ring current , 2011 .

[38]  R. Denton,et al.  Ion Bernstein instability in the terrestrial magnetosphere: Linear dispersion theory , 2010 .

[39]  C. Owen,et al.  Multiple harmonic ULF waves in the plasma sheet boundary layer observed by Cluster , 2010 .

[40]  R. Horne,et al.  Global simulation of magnetosonic wave instability in the storm time magnetosphere , 2010 .

[41]  K. Glassmeier,et al.  Ultra‐low‐frequency waves and associated wave vectors observed in the plasma sheet boundary layer by Cluster , 2008 .

[42]  R. Horne,et al.  Survey of magnetosonic waves and proton ring distributions in the Earth's inner magnetosphere , 2008 .

[43]  S. Barabash,et al.  Asymmetry of plasma fluxes at Mars. ASPERA-3 observations and hybrid simulations , 2008 .

[44]  D. Mitchell,et al.  Electron pitch angle distributions as indicators of magnetic field topology near Mars , 2007 .

[45]  C. Russell,et al.  Proton cyclotron waves at Mars: Exosphere structure and evidence for a fast neutral disk , 2006 .

[46]  M. Acuna,et al.  Martian shock and magnetic pile-up boundary positions and shapes determined from the Phobos 2 and Mars Global Surveyor data sets , 2004 .

[47]  H. Hayakawa,et al.  Solar Wind-Induced Atmospheric Erosion at Mars: First Results from ASPERA-3 on Mars Express , 2004, Science.

[48]  D. Mitchell,et al.  Mapping crustal magnetic fields at Mars using electron reflectometry , 2004 .

[49]  M. Acuna,et al.  Observations of low-frequency magnetic oscillations in the Martian magnetosheath, magnetic pileup region, and tail , 2004 .

[50]  J. Slavin,et al.  Bow Shock and Upstream Phenomena at Mars , 2004 .

[51]  Dana Hurley Crider,et al.  The plasma Environment of Mars , 2004 .

[52]  Ondrej Santolik,et al.  Singular value decomposition methods for wave propagation analysis , 2003 .

[53]  D. Mitchell,et al.  Observations of low‐frequency electromagnetic plasma waves upstream from the Martian shock , 2002 .

[54]  Wolfgang Baumjohann,et al.  Magnetic field fluctuations across the Earth’s bow shock , 2001 .

[55]  R. Horne,et al.  Proton and electron heating by radially propagating fast magnetosonic waves , 2000 .

[56]  Brian J. Anderson,et al.  Ion anisotropy instabilities in the magnetosheath , 1993 .

[57]  B. Anderson,et al.  Electromagnetic ion cyclotron waves observed in the plasma depletion layer , 1991 .

[58]  A. Roux,et al.  A systematic study of ULF Waves Above FH+ from GEOS 1 and 2 Measurements and Their Relationships with proton ring distributions , 1982 .

[59]  D. Gurnett Plasma wave interactions with energetic ions near the magnetic equator , 1975 .

[60]  C. Russell,et al.  OGO 3 observations of ELF noise in the magnetosphere , 1970 .

[61]  F. Leblanc,et al.  Variability of the hydrogen in the martian upper atmosphere as simulated by a 3D atmosphere-exosphere coupling , 2015 .

[62]  M. L. Goldstein,et al.  The Magnetosheath , 2005 .

[63]  D. Mitchell,et al.  MGS MAG/ER observations at the magnetic pileup boundary of Mars: draping enhancement and low frequency waves , 2002 .

[64]  W. Kwan The Loss of the Martian Atmosphere , 2001 .