ALGEBRO-GEOMETRIC FEYNMAN RULES

We give a general procedure to construct "algebro-geometric Feynman rules", that is, characters of the Connes–Kreimer Hopf algebra of Feynman graphs that factor through a Grothendieck ring of immersed conical varieties, via the class of the complement of the affine graph hypersurface. In particular, this maps to the usual Grothendieck ring of varieties, defining "motivic Feynman rules". We also construct an algebro-geometric Feynman rule with values in a polynomial ring, which does not factor through the usual Grothendieck ring, and which is defined in terms of characteristic classes of singular varieties. This invariant recovers, as a special value, the Euler characteristic of the projective graph hypersurface complement. The main result underlying the construction of this invariant is a formula for the characteristic classes of the join of two projective varieties. We discuss the BPHZ renormalization procedure in this algebro-geometric context and some motivic zeta functions arising from the partition functions associated to motivic Feynman rules.

[1]  P. Aluffi Chern classes of graph hypersurfaces and deletion-contraction , 2011, 1106.1447.

[2]  D. Kreimer,et al.  Feynman amplitudes and Landau singularities for 1-loop graphs , 2010, 1007.0338.

[3]  D. Doryn On One Example and One Counterexample in Counting Rational Points on Graph Hypersurfaces , 2010, 1006.3533.

[4]  M. Marcolli,et al.  Graph Hypersurfaces and a Dichotomy in the Grothendieck Ring , 2010, 1005.4470.

[5]  K. Yeats,et al.  Spanning Forest Polynomials and the Transcendental Weight of Feynman Graphs , 2009, 0910.5429.

[6]  F. Brown On the periods of some Feynman integrals , 2009, 0910.0114.

[7]  M. Marcolli,et al.  Feynman motives and deletion-contraction relations , 2009, 0907.3225.

[8]  M. Marcolli Feynman integrals and motives , 2009, 0907.0321.

[9]  M. Marcolli,et al.  Parametric Feynman integrals and determinant hypersurfaces , 2009, 0901.2107.

[10]  D. Doryn Cohomology of graph hypersurfaces associated to certain Feynman graphs , 2008, 0811.0402.

[11]  S. Bloch Motives associated to sums of graphs , 2008, 0810.1313.

[12]  P. Aluffi Chern classes of blow-ups , 2008, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  M. Marcolli,et al.  Feynman motives of banana graphs , 2008, 0807.1690.

[14]  J. Walecka,et al.  Relativistic Quantum Mechanics , 2008 .

[15]  M. Marcolli,et al.  Supermanifolds from Feynman graphs , 2008, 0806.1681.

[16]  M. Marcolli Motivic renormalization and singularities , 2008, 0804.4824.

[17]  D. Kreimer,et al.  Mixed Hodge Structures and Renormalization in Physics , 2008, 0804.4399.

[18]  Francis Brown,et al.  The Massless Higher-Loop Two-Point Function , 2008, 0804.1660.

[19]  S. Bloch,et al.  Motives associated to graphs , 2007 .

[20]  Paolo Aluffi Classes de Chern des variétés singulières, revisitées , 2006, math/0601453.

[21]  A. Connes,et al.  Quantum fields and motives , 2005, hep-th/0504085.

[22]  Li Guo,et al.  Spitzer's identity and the algebraic Birkhoff decomposition in pQFT , 2004, hep-th/0407082.

[23]  M. Larsen,et al.  Motivic measures and stable birational geometry , 2001, math/0110255.

[24]  Mukund Rangamani,et al.  Quantum Field Theory , 2001, Foundations of Modern Physics.

[25]  M. Kapranov The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups , 2000, math/0001005.

[26]  A. Connes,et al.  Renormalization in Quantum Field Theory and the Riemann–Hilbert Problem I: The Hopf Algebra Structure of Graphs and the Main Theorem , 1999, hep-th/9912092.

[27]  A. Connes,et al.  Renormalization in Quantum Field Theory and the Riemann--Hilbert Problem II: The β-Function, Diffeomorphisms and the Renormalization Group , 1999, hep-th/9909126.

[28]  Shoji Yokura,et al.  On a Verdier-type Riemann–Roch for Chern–Schwartz–MacPherson class , 1999 .

[29]  C. Soulé,et al.  Descent, motives and K-theory. , 1995, alg-geom/9507013.

[30]  A Dimitri Fotiadi,et al.  Varietes polaires locales et classes de Chern des varietes singulieres , 1981 .

[31]  Gian-Carlo Rota,et al.  Coalgebras and Bialgebras in Combinatorics , 1979 .

[32]  Robert MacPherson,et al.  Chern Classes for Singular Algebraic Varieties , 1974 .

[33]  Johan P. Hansen,et al.  INTERSECTION THEORY , 2011 .

[34]  J. M. Boardman,et al.  Singularities of differentiable maps , 2011 .

[35]  A. Connes,et al.  Noncommutative Geometry, Quantum Fields and Motives , 2007 .

[36]  Li Guo Baxter Algebras and the Umbral Calculus , 2007 .

[37]  D. Kreimer,et al.  Communications in Mathematical Physics On Motives Associated to Graph Polynomials , 2006 .

[38]  Jerrold E. Marsden,et al.  Geometric mechanics, Lagrangian reduction, and nonholonomic systems , 2001 .

[39]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[40]  Eberhard Zeidler,et al.  Quantum field theory , 2001 .

[41]  M. Kwieciński Formule du produit pour les classes caractéristiques de Chern-Schwartz-MacPherson et homologie d'intersection , 1992 .

[42]  J. M. Boardman,et al.  Singularties of differentiable maps , 1967 .