Random Hyper-parameter Search-Based Deep Neural Network for Power Consumption Forecasting
暂无分享,去创建一个
Alicia Troncoso Lora | Francisco Martínez-Álvarez | David Gutiérrez-Avilés | J. F. Torres | J. F. Torres | A. T. Lora | F. Martínez-Álvarez | David Gutiérrez-Avilés
[1] Alicia Troncoso Lora,et al. A scalable approach based on deep learning for big data time series forecasting , 2018, Integr. Comput. Aided Eng..
[2] Sebastian Ruder,et al. An overview of gradient descent optimization algorithms , 2016, Vestnik komp'iuternykh i informatsionnykh tekhnologii.
[3] Steven R. Young,et al. Optimizing deep learning hyper-parameters through an evolutionary algorithm , 2015, MLHPC@SC.
[4] Reynold Xin,et al. Apache Spark , 2016 .
[5] Achille Fokoue,et al. An effective algorithm for hyperparameter optimization of neural networks , 2017, IBM J. Res. Dev..
[6] Jing Gao,et al. Multistep-Ahead Time Series Prediction , 2006, PAKDD.
[7] Mario Vasak,et al. Deep neural networks for ultra-short-term wind forecasting , 2015, 2015 IEEE International Conference on Industrial Technology (ICIT).
[8] Xiang Li,et al. Deep learning architecture for air quality predictions , 2016, Environmental Science and Pollution Research.
[9] Taimoor Akhtar,et al. Efficient Hyperparameter Optimization for Deep Learning Algorithms Using Deterministic RBF Surrogates , 2016, AAAI.
[10] Yoshua Bengio,et al. Algorithms for Hyper-Parameter Optimization , 2011, NIPS.
[11] Yoshua Bengio,et al. Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..
[12] Aaron Klein,et al. Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets , 2016, AISTATS.
[13] Yue Zhang,et al. Deep Learning for Event-Driven Stock Prediction , 2015, IJCAI.