Convexity in Partial Cubes: The Hull Number

We prove that the combinatorial optimization problem of determining the hull number of a partial cube is NP-complete. This makes partial cubes the minimal graph class for which NP-completeness of this problem is known and improves earlier results in the literature. On the other hand we provide a polynomial-time algorithm to determine the hull number of planar partial cube quadrangulations. Instances of the hull number problem for partial cubes described include poset dimension and hitting sets for interiors of curves in the plane. To obtain the above results, we investigate convexity in partial cubes and obtain a new characterization of these graphs in terms of their lattice of convex subgraphs. This refines a theorem of Handa. Furthermore we provide a topological representation theorem for planar partial cubes, generalizing a result of Fukuda and Handa about tope graphs of rank 3 oriented matroids.

[1]  Komei Fukuda,et al.  Antipodal graphs and oriented matroids , 1993, Discret. Math..

[2]  Frédéric Giroire,et al.  On the hull number of some graph classes , 2011, Electron. Notes Discret. Math..

[3]  G. Ziegler Lectures on Polytopes , 1994 .

[4]  E. Helly,et al.  Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten , 1930 .

[5]  Jim Lawrence,et al.  Oriented matroids , 1978, J. Comb. Theory B.

[6]  Jayme Luiz Szwarcfiter,et al.  On the computation of the hull number of a graph , 2009, Discret. Math..

[7]  David Eppstein,et al.  Media theory - interdisciplinary applied mathematics , 2010 .

[8]  Sandi Klavzar,et al.  Convex excess in partial cubes , 2012, J. Graph Theory.

[9]  M. Yannakakis The Complexity of the Partial Order Dimension Problem , 1982 .

[10]  Dieter Rautenbach,et al.  Geodetic Number versus Hull Number in P3-Convexity , 2013, SIAM J. Discret. Math..

[11]  Robert J. Fowler,et al.  Optimal Packing and Covering in the Plane are NP-Complete , 1981, Inf. Process. Lett..

[12]  Stefan Felsner,et al.  ULD-Lattices and Δ-Bonds , 2008, Combinatorics, Probability and Computing.

[13]  D. Djoković Distance-preserving subgraphs of hypercubes , 1973 .

[14]  Keiichi Handa,et al.  Topes of Oriented Matroids and Related Structures , 1993 .

[15]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[16]  José Cáceres,et al.  On the geodetic and the hull numbers in strong product graphs , 2009, Comput. Math. Appl..

[17]  Lhouari Nourine,et al.  Polynomial Time Algorithms for Computing a Minimum Hull Set in Distance-Hereditary and Chordal Graphs , 2016, SIAM J. Discret. Math..

[18]  Sergei Ovchinnikov,et al.  Media theory , 2002, Discret. Appl. Math..

[19]  Júlio Araújo,et al.  Hull number: P5-free graphs and reduction rules , 2016, Discret. Appl. Math..

[20]  Raul Cordovil,et al.  Sur les Matroïdes Orientés de Rang 3 et les Arrangements de Pseudodroites dans le Plan Projectif Réel , 1982, Eur. J. Comb..

[21]  Bernard Monjardet,et al.  A use for frequently rediscovering a concept , 1985 .

[22]  L. Lovász,et al.  Polynomial Algorithms for Perfect Graphs , 1984 .

[23]  W. Trotter,et al.  Combinatorics and Partially Ordered Sets: Dimension Theory , 1992 .

[24]  Jayme Luiz Szwarcfiter,et al.  On the Hull Number of Triangle-Free Graphs , 2010, SIAM J. Discret. Math..

[25]  W. Marsden I and J , 2012 .

[26]  Russell Impagliazzo,et al.  Complexity of k-SAT , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[27]  Júlio Araújo,et al.  Hull number: P5-free graphs and reduction rules , 2013, Electron. Notes Discret. Math..

[28]  RAUL CORDOVIL FLIPPING IN ACYCLIC AND STRONGLY CONNECTED GRAPHS , 2005 .

[29]  Gary Chartrand,et al.  Convex sets in graphs , 1999 .

[30]  Richard P. Stanley,et al.  Two poset polytopes , 1986, Discret. Comput. Geom..

[31]  Tao Jiang,et al.  On the Steiner, geodetic and hull numbers of graphs , 2005, Discret. Math..

[32]  Lhouari Nourine,et al.  Polynomial Time Algorithms for Computing a Minimum Hull Set in Distance-Hereditary and Chordal Graphs , 2013, SIAM J. Discret. Math..

[33]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[34]  Frank Harary,et al.  Graph Theory , 2016 .

[35]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[36]  Hans-Jürgen Bandelt,et al.  Graphs with intrinsic s3 convexities , 1989, J. Graph Theory.

[37]  R. P. Kurshan,et al.  On the addressing problem of loop switching , 1972 .

[38]  Peter Winkler,et al.  Isometric embedding in products of complete graphs , 1984, Discret. Appl. Math..

[39]  Martin G. Everett,et al.  The hull number of a graph , 1985, Discret. Math..

[40]  David Eppstein,et al.  Isometric Diamond Subgraphs , 2008, GD.

[41]  M. V. Semyonova,et al.  Lattices with unique irreducible decompositions , 2000 .