Convexity in Partial Cubes: The Hull Number
暂无分享,去创建一个
[1] Komei Fukuda,et al. Antipodal graphs and oriented matroids , 1993, Discret. Math..
[2] Frédéric Giroire,et al. On the hull number of some graph classes , 2011, Electron. Notes Discret. Math..
[3] G. Ziegler. Lectures on Polytopes , 1994 .
[4] E. Helly,et al. Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten , 1930 .
[5] Jim Lawrence,et al. Oriented matroids , 1978, J. Comb. Theory B.
[6] Jayme Luiz Szwarcfiter,et al. On the computation of the hull number of a graph , 2009, Discret. Math..
[7] David Eppstein,et al. Media theory - interdisciplinary applied mathematics , 2010 .
[8] Sandi Klavzar,et al. Convex excess in partial cubes , 2012, J. Graph Theory.
[9] M. Yannakakis. The Complexity of the Partial Order Dimension Problem , 1982 .
[10] Dieter Rautenbach,et al. Geodetic Number versus Hull Number in P3-Convexity , 2013, SIAM J. Discret. Math..
[11] Robert J. Fowler,et al. Optimal Packing and Covering in the Plane are NP-Complete , 1981, Inf. Process. Lett..
[12] Stefan Felsner,et al. ULD-Lattices and Δ-Bonds , 2008, Combinatorics, Probability and Computing.
[13] D. Djoković. Distance-preserving subgraphs of hypercubes , 1973 .
[14] Keiichi Handa,et al. Topes of Oriented Matroids and Related Structures , 1993 .
[15] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[16] José Cáceres,et al. On the geodetic and the hull numbers in strong product graphs , 2009, Comput. Math. Appl..
[17] Lhouari Nourine,et al. Polynomial Time Algorithms for Computing a Minimum Hull Set in Distance-Hereditary and Chordal Graphs , 2016, SIAM J. Discret. Math..
[18] Sergei Ovchinnikov,et al. Media theory , 2002, Discret. Appl. Math..
[19] Júlio Araújo,et al. Hull number: P5-free graphs and reduction rules , 2016, Discret. Appl. Math..
[20] Raul Cordovil,et al. Sur les Matroïdes Orientés de Rang 3 et les Arrangements de Pseudodroites dans le Plan Projectif Réel , 1982, Eur. J. Comb..
[21] Bernard Monjardet,et al. A use for frequently rediscovering a concept , 1985 .
[22] L. Lovász,et al. Polynomial Algorithms for Perfect Graphs , 1984 .
[23] W. Trotter,et al. Combinatorics and Partially Ordered Sets: Dimension Theory , 1992 .
[24] Jayme Luiz Szwarcfiter,et al. On the Hull Number of Triangle-Free Graphs , 2010, SIAM J. Discret. Math..
[25] W. Marsden. I and J , 2012 .
[26] Russell Impagliazzo,et al. Complexity of k-SAT , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).
[27] Júlio Araújo,et al. Hull number: P5-free graphs and reduction rules , 2013, Electron. Notes Discret. Math..
[28] RAUL CORDOVIL. FLIPPING IN ACYCLIC AND STRONGLY CONNECTED GRAPHS , 2005 .
[29] Gary Chartrand,et al. Convex sets in graphs , 1999 .
[30] Richard P. Stanley,et al. Two poset polytopes , 1986, Discret. Comput. Geom..
[31] Tao Jiang,et al. On the Steiner, geodetic and hull numbers of graphs , 2005, Discret. Math..
[32] Lhouari Nourine,et al. Polynomial Time Algorithms for Computing a Minimum Hull Set in Distance-Hereditary and Chordal Graphs , 2013, SIAM J. Discret. Math..
[33] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[34] Frank Harary,et al. Graph Theory , 2016 .
[35] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[36] Hans-Jürgen Bandelt,et al. Graphs with intrinsic s3 convexities , 1989, J. Graph Theory.
[37] R. P. Kurshan,et al. On the addressing problem of loop switching , 1972 .
[38] Peter Winkler,et al. Isometric embedding in products of complete graphs , 1984, Discret. Appl. Math..
[39] Martin G. Everett,et al. The hull number of a graph , 1985, Discret. Math..
[40] David Eppstein,et al. Isometric Diamond Subgraphs , 2008, GD.
[41] M. V. Semyonova,et al. Lattices with unique irreducible decompositions , 2000 .