Amplitude control and projective synchronization of a dynamical system with exponential nonlinearity

Abstract A dynamical system with exponential nonlinearity is reported in this paper. Analysis shows that one can flexibly control signal amplitude of the system by introducing control function in the exponential nonlinear term, and the corresponding Lyapunov exponents keep invariable. But the coefficient in cross-product term cannot provide amplitude modulation. By considering the fact that the unique amplitude function can provide the scale factors, a control scheme combining the techniques of linear feedback and variable substitution is presented to realize projective synchronization of the chaotic system.

[1]  Jun Wang,et al.  Absolute term introduced to rebuild the chaotic attractor with constant Lyapunov exponent spectrum , 2012 .

[2]  Louis M. Pecora,et al.  Synchronizing chaotic systems , 1993, Optics & Photonics.

[3]  Chunlai Li,et al.  Robust control for a class of chaotic and hyperchaotic systems via linear state feedback , 2012 .

[4]  Pyung Hun Chang,et al.  Simple, robust control and synchronization of the Lorenz system , 2013 .

[5]  Pyung Hun Chang,et al.  Introduction and synchronization of a five-term chaotic system with an absolute-value term , 2013 .

[6]  Chun-Lai Li,et al.  Tracking control and generalized projective synchronization of a class of hyperchaotic system with unknown parameter and disturbance , 2012 .

[7]  Louis M. Pecora,et al.  Synchronizing chaotic circuits , 1991 .

[8]  Guanrong Chen,et al.  An Unusual 3D Autonomous Quadratic Chaotic System with Two Stable Node-Foci , 2010, Int. J. Bifurc. Chaos.

[9]  G. Q. Zhong,et al.  Circuitry Implementation and Synchronization of Chen's Attractor , 2002, Int. J. Bifurc. Chaos.

[10]  Shihua Chen,et al.  Adaptive control for anti-synchronization of Chua's chaotic system , 2005 .

[11]  O. Rössler An equation for continuous chaos , 1976 .

[12]  Zaid Odibat,et al.  A note on phase synchronization in coupled chaotic fractional order systems , 2012 .

[13]  Zhenya Yan,et al.  Q-S (lag or anticipated) synchronization backstepping scheme in a class of continuous-time hyperchaotic systems--a symbolic-numeric computation approach. , 2005, Chaos.

[14]  Chun-Lai Li,et al.  Adaptive Sliding Mode Control for Synchronization of a Fractional-Order Chaotic System , 2013 .

[15]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[16]  CHUNLAI LI,et al.  Adaptive control and synchronization of a fractional-order chaotic system , 2013 .

[17]  Jing Zhang,et al.  Synchronisation of a fractional-order chaotic system using finite-time input-to-state stability , 2016, Int. J. Syst. Sci..

[18]  Chunlai Li,et al.  A novel chaotic system and its topological horseshoe , 2013 .

[19]  Xiangjun Wu,et al.  Adaptive generalized function projective synchronization of uncertain chaotic complex systems , 2013, Nonlinear Dynamics.

[20]  Hongmin Li,et al.  Adaptive impulsive synchronization of a class of chaotic and hyperchaotic systems , 2012 .

[21]  Pyung Hun Chang,et al.  A new butterfly-shaped chaotic attractor , 2013 .

[22]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[24]  Guanrong Chen,et al.  A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system , 2008 .

[25]  Chongxin Liu,et al.  A new chaotic attractor , 2004 .

[26]  Chun-Lai Li,et al.  Analysis of a novel three-dimensional chaotic system , 2013 .

[27]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[28]  Li Chun-biao,et al.  A novel chaotic attractor with constant Lyapunov exponent spectrum and its circuit implementation , 2010 .