Communication Complexity Theory: Thirty-Five Years of Set Disjointness

The set disjointness problem features k communicating parties and k subsets S 1,S 2,…,S k ⊆ {1,2,…,n}. No single party knows all k subsets, and the objective is to determine with minimal communication whether the k subsets have nonempty intersection. The important special case k = 2 corresponds to two parties trying to determine whether their respective sets intersect. The study of the set disjointness problem spans almost four decades and offers a unique perspective on the remarkable evolution of communication complexity theory. We discuss known results on the communication complexity of set disjointness in the deterministic, nondeterministic, randomized, unbounded-error, and multiparty models, emphasizing the variety of mathematical techniques involved.

[1]  Mark Braverman,et al.  Tight Bounds for Set Disjointness in the Message Passing Model , 2013, ArXiv.

[2]  Subhash Khot,et al.  Near-optimal lower bounds on the multi-party communication complexity of set disjointness , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[3]  Noam Nisan,et al.  The communication requirements of efficient allocations and supporting prices , 2006, J. Econ. Theory.

[4]  Noam Nisan,et al.  Multiparty Protocols, Pseudorandom Generators for Logspace, and Time-Space Trade-Offs , 1992, J. Comput. Syst. Sci..

[5]  Noam Nisan,et al.  On rank vs. communication complexity , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[6]  Vojtech Rödl,et al.  Geometrical realization of set systems and probabilistic communication complexity , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[7]  Noam Nisan,et al.  On the degree of boolean functions as real polynomials , 1992, STOC '92.

[8]  Noga Alon,et al.  The Space Complexity of Approximating the Frequency Moments , 1999 .

[9]  Avi Wigderson,et al.  A Strong Direct Product Theorem for Corruption and the Multiparty Communication Complexity of Disjointness , 2006, computational complexity.

[10]  Ronald de Wolf,et al.  A Hypercontractive Inequality for Matrix-Valued Functions with Applications to Quantum Computing and LDCs , 2007, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[11]  Shai Ben-David,et al.  Limitations of Learning Via Embeddings in Euclidean Half Spaces , 2003, J. Mach. Learn. Res..

[12]  Ilan Newman,et al.  Private vs. Common Random Bits in Communication Complexity , 1991, Inf. Process. Lett..

[13]  Yaoyun Shi,et al.  Quantum communication complexity of block-composed functions , 2007, Quantum Inf. Comput..

[14]  Satyanarayana V. Lokam,et al.  Relations Between Communication Complexity, Linear Arrangements, and Computational Complexity , 2001, FSTTCS.

[15]  E. Kushilevitz,et al.  Communication Complexity: Basics , 1996 .

[16]  Alfred V. Aho,et al.  On notions of information transfer in VLSI circuits , 1983, STOC.

[17]  Alexander A. Razborov,et al.  The Sign-Rank of AC0 , 2010, SIAM J. Comput..

[18]  Dmitry Gavinsky,et al.  A Separation of NP and coNP in Multiparty Communication Complexity , 2010, Theory Comput..

[19]  Alexander A. Razborov,et al.  Applications of matrix methods to the theory of lower bounds in computational complexity , 1990, Comb..

[20]  Uriel Feige,et al.  Proceedings of the thirty-ninth annual ACM symposium on Theory of computing , 2007, STOC 2007.

[21]  Bala Kalyanasundaram,et al.  The Probabilistic Communication Complexity of Set Intersection , 1992, SIAM J. Discret. Math..

[22]  Alexander A. Sherstov Strong direct product theorems for quantum communication and query complexity , 2010, STOC '11.

[23]  Ramesh Hariharan,et al.  FST TCS 2001: Foundations of Software Technology and Theoretical Computer Science , 2001, Lecture Notes in Computer Science.

[24]  Ravi Kumar,et al.  An information statistics approach to data stream and communication complexity , 2004, J. Comput. Syst. Sci..

[25]  Adam R. Klivans,et al.  Learning DNF in time 2 Õ(n 1/3 ) . , 2001, STOC 2001.

[26]  Paul Beame,et al.  Multiparty Communication Complexity of AC^0 , 2008, Electron. Colloquium Comput. Complex..

[27]  Arkadev Chattopadhyay,et al.  Multiparty Communication Complexity of Disjointness , 2008, Electron. Colloquium Comput. Complex..

[28]  Andrew C. Yao,et al.  Lower bounds by probabilistic arguments , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[29]  Alexander A. Sherstov Separating AC0 from depth-2 majority circuits , 2007, STOC '07.

[30]  Arkadev Chattopadhyay Circuits, communication and polynomials , 2009 .

[31]  Troy Lee,et al.  Disjointness is Hard in the Multiparty Number-on-the-Forehead Model , 2007, 2008 23rd Annual IEEE Conference on Computational Complexity.

[32]  Janos Simon,et al.  Probabilistic Communication Complexity , 1986, J. Comput. Syst. Sci..

[33]  Richard J. Lipton,et al.  Multi-party protocols , 1983, STOC.

[34]  Alexander A. Sherstov The unbounded-error communication complexity of symmetric functions , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[35]  Rocco A. Servedio,et al.  Learning DNF in time 2Õ(n1/3) , 2004, J. Comput. Syst. Sci..

[36]  Andrew Chi-Chih Yao,et al.  Some complexity questions related to distributive computing(Preliminary Report) , 1979, STOC.

[37]  Alexander A. Razborov,et al.  The Sign-Rank of AC^O , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[38]  Eyal Kushilevitz,et al.  Communication Complexity: Index of Notation , 1996 .

[39]  Alexander A. Sherstov Halfspace Matrices , 2007, Computational Complexity Conference.

[40]  Hartmut Klauck,et al.  Direct Product Theorems for Communication Complexity via Subdistribution Bounds , 2007, Electron. Colloquium Comput. Complex..

[41]  Alexander A. Sherstov Communication Lower Bounds Using Directional Derivatives , 2014, JACM.

[42]  Peter Frankl,et al.  Complexity classes in communication complexity theory , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[43]  Avi Wigderson,et al.  Quantum vs. classical communication and computation , 1998, STOC '98.

[44]  Hartmut Klauck A strong direct product theorem for disjointness , 2010, STOC '10.

[45]  Alexander A. Sherstov The multiparty communication complexity of set disjointness , 2012, STOC '12.

[46]  Jürgen Forster,et al.  A linear lower bound on the unbounded error probabilistic communication complexity , 2001, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[47]  Andris Ambainis,et al.  Quantum search of spatial regions , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[48]  Paul Beame,et al.  MULTIPARTY COMMUNICATION COMPLEXITY AND THRESHOLD CIRCUIT SIZE OF AC0∗ , 2010 .

[49]  Nathan Linial,et al.  Complexity measures of sign matrices , 2007, Comb..

[50]  Alexander A. Sherstov SeparatingAC0 from Depth-2 Majority Circuits , 2009, SIAM J. Comput..

[51]  Jürgen Forster A linear lower bound on the unbounded error probabilistic communication complexity , 2002, J. Comput. Syst. Sci..

[52]  Kurt Mehlhorn,et al.  Las Vegas is better than determinism in VLSI and distributed computing (Extended Abstract) , 1982, STOC '82.

[53]  A. Razborov Quantum communication complexity of symmetric predicates , 2002, quant-ph/0204025.

[54]  Alexander A. Sherstov,et al.  The Sign-rank of Ac , 2008 .

[55]  Michael E. Saks,et al.  Lattices, mobius functions and communications complexity , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[56]  Hartmut Klauck,et al.  Rectangle size bounds and threshold covers in communication complexity , 2002, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[57]  Mark Braverman,et al.  From information to exact communication , 2013, STOC '13.

[58]  Denis Thérien,et al.  Computational complexity questions related to finite monoids and semigroups , 2003 .

[59]  Alexander A. Razborov,et al.  On the Distributional Complexity of Disjointness , 1992, Theor. Comput. Sci..

[60]  Hartmut Klauck,et al.  Quantum and classical strong direct product theorems and optimal time-space tradeoffs , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[61]  Alexander A. Sherstov The Pattern Matrix Method , 2009, SIAM J. Comput..

[62]  Michael Saksl Lattices, MEbius Functions and Communication Complexity , 1988 .

[63]  Vince Grolmusz,et al.  The BNS Lower Bound for Multi-Party Protocols in Nearly Optimal , 1994, Inf. Comput..