Effect of granulocyte colony-stimulating factor mobilization on phenotypical and functional properties of immune cells.

[1]  M. Harada,et al.  G-CSF reduces IFN-γ and IL-4 production by T cells after allogeneic stimulation by indirectly modulating monocyte function , 2000, Bone Marrow Transplantation.

[2]  S. Heimfeld,et al.  Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. , 2000, Blood.

[3]  N. Young,et al.  Pharmacologic doses of granulocyte colony-stimulating factor affect cytokine production by lymphocytes in vitro and in vivo. , 2000, Blood.

[4]  K. Tadokoro,et al.  Dendritic cells are targets for human invariant Valpha24+ natural killer T-cell cytotoxic activity: an important immune regulatory function. , 2000, Experimental hematology.

[5]  J. Bourhis,et al.  Randomized trial of bone marrow versus lenograstim-primed blood cell allogeneic transplantation in patients with early-stage leukemia: a report from the Société Française de Greffe de Moelle. , 2000, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[6]  E. Robinet,et al.  Detection of intracellular cytokines in citrated whole blood or marrow samples by flow cytometry. , 1999, Journal of immunological methods.

[7]  Takai,et al.  Natural killer (NK) T cells are significantly decreased in the peripheral blood of patients with rheumatoid arthritis (RA) , 1999, Clinical and experimental immunology.

[8]  T. Hartung,et al.  Effect of filgrastim treatment on inflammatory cytokines and lymphocyte functions , 1999, Clinical pharmacology and therapeutics.

[9]  S. Chouaib,et al.  Effect of tumor growth factor-beta on NK receptor expression by allostimulated CD8+ T lymphocytes. , 1999, European cytokine network.

[10]  B. Charpentier,et al.  Peripheral blood T cells generated after allogeneic bone marrow transplantation: lower levels of bcl-2 protein and enhanced sensitivity to spontaneous and CD95-mediated apoptosis in vitro. Abrogation of the apoptotic phenotype coincides with the recovery of normal naive/primed T-cell profiles. , 1999, Blood.

[11]  M. Kamel,et al.  Peripheral blood vs bone marrow as a source for allogeneic hematopoietic stem cell transplantation , 1999, Bone Marrow Transplantation.

[12]  T. Bellón,et al.  Natural killer cell activation and inhibition by receptors for MHC class I. , 1999, Current opinion in immunology.

[13]  I. Iwamoto,et al.  Characteristics of T-cell receptor Vα24JαQ T cells, a human counterpart of murine NK1+ T cells, from normal subjects , 1999 .

[14]  S. Strober,et al.  Bone Marrow NK1.1− and NK1.1+ T Cells Reciprocally Regulate Acute Graft versus Host Disease , 1999, The Journal of experimental medicine.

[15]  É. Vivier,et al.  Differential regulation of killer cell Ig‐like receptors and CD94 lectin‐like dimers on NK and T lymphocytes from HIV‐1‐infected individuals , 1999, European journal of immunology.

[16]  Solana,et al.  Expression of killer inhibitory receptors on cytotoxic cells from HIV‐1‐infected individuals , 1999, Clinical and experimental immunology.

[17]  A. Ugazio,et al.  Immune reconstitution after bone marrow transplantation for combined immunodeficiencies: down-modulation of Bcl-2 and high expression of CD95/Fas account for increased susceptibility to spontaneous and activation-induced lymphocyte cell death , 1999, Bone Marrow Transplantation.

[18]  R. Bellomo,et al.  Transforming growth factor‐β‐induced expression of CD94/NKG2A inhibitory receptors in human T lymphocytes , 1999, European journal of immunology.

[19]  J. Talmadge,et al.  IL‐2 Expansion of T and NK Cells from Growth Factor‐Mobilized Peripheral Blood Stem Cell Products: Monocyte Inhibition , 1998, Journal of immunotherapy.

[20]  F. Re,et al.  Alloantigen presenting capacity, T cell alloreactivity and NK function of G-CSF-mobilized peripheral blood cells , 1998, Bone Marrow Transplantation.

[21]  F. Finkelman,et al.  Differential expression of Fas and Fas ligand in acute and chronic graft-versus-host disease: up-regulation of Fas and Fas ligand requires CD8+ T cell activation and IFN-gamma production. , 1998, Journal of immunology.

[22]  M. Mielcarek,et al.  Production of interleukin-10 by granulocyte colony-stimulating factor-mobilized blood products: a mechanism for monocyte-mediated suppression of T-cell proliferation. , 1998, Blood.

[23]  L. Moretta,et al.  IL‐12‐induced up‐regulation of NKRP1A expression in human NK cells and consequent NKRP1A‐ mediated down‐regulation of NK cell activation , 1998, European journal of immunology.

[24]  L. Moretta,et al.  Regulation of KIR expression in human T cells: a safety mechanism that may impair protective T-cell responses. , 1998, Immunology today.

[25]  R. Bellomo,et al.  HLA class I-specific inhibitory receptors in human T lymphocytes: interleukin 15-induced expression of CD94/NKG2A in superantigen- or alloantigen-activated CD8+ T cells. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[26]  K. Sullivan,et al.  Allogeneic peripheral blood stem cell transplantation may be associated with a high risk of chronic graft-versus-host disease. , 1997, Blood.

[27]  Y. Suzuki,et al.  Gamma interferon induces Fas-dependent apoptosis of Peyer's patch T cells in mice following peroral infection with Toxoplasma gondii , 1997, Infection and immunity.

[28]  F. Prósper,et al.  Natural killer (NK) cells are functionally abnormal and NK cell progenitors are diminished in granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cell collections. , 1997, Blood.

[29]  Hervé Groux,et al.  A CD4+T-cell subset inhibits antigen-specific T-cell responses and prevents colitis , 1997, Nature.

[30]  C. Peschle,et al.  Inhibition of lymphocyte blastogenic response in healthy donors treated with recombinant human granulocyte colony-stimulating factor (rhG-CSF): possible role of lactoferrin and interleukin-1 receptor antagonist , 1997, Bone Marrow Transplantation.

[31]  G. Hill,et al.  Cytokine cascades in acute graft-versus-host disease. , 1997, Transplantation.

[32]  N. Schmitz,et al.  Allogeneic peripheral blood progenitor cell transplantation in a murine model : Evidence for an improved graft-versus-leukemia effect , 1997 .

[33]  S. Balk,et al.  Requirements for CD1d Recognition by Human Invariant Vα24+ CD4−CD8− T Cells , 1997, The Journal of experimental medicine.

[34]  S. Strober,et al.  Granulocyte colony-stimulating factor reduces the capacity of blood mononuclear cells to induce graft-versus-host disease: impact on blood progenitor cell transplantation. , 1997, Blood.

[35]  R. Bellomo,et al.  Interleukin‐15‐induced maturation of human natural killer cells from early thymic precursors: selective expression of CD94/NKG2‐A as the only HLA class I‐specific inhibitory receptor , 1997, European journal of immunology.

[36]  R. Negrin,et al.  Granulocyte colony-stimulating factor-induced comobilization of CD4- CD8- T cells and hematopoietic progenitor cells (CD34+) in the blood of normal donors. , 1997, Blood.

[37]  M. Mielcarek,et al.  Suppression of alloantigen-induced T-cell proliferation by CD14+ cells derived from granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells. , 1997, Blood.

[38]  L. Lanier,et al.  Regulation of T cell lymphokine production by killer cell inhibitory receptor recognition of self HLA class I alleles , 1996, The Journal of experimental medicine.

[39]  S. Rutella,et al.  rhG-CSF in healthy donors: mobilization of peripheral hemopoietic progenitors and effect on peripheral blood leukocytes. , 1996, Journal of hematotherapy.

[40]  I. Benet,et al.  Allogeneic peripheral blood progenitor cell transplantation: analysis of short-term engraftment and acute GVHD incidence in 33 cases. allo-PBPCT Spanish Group. , 1996, Bone marrow transplantation.

[41]  H. Weiner,et al.  Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-beta1-secreting Th3 T cells by oral administration of myelin in multiple sclerosis patients. , 1996, The Journal of clinical investigation.

[42]  J. Luider,et al.  Allogeneic blood cell transplants for haematological malignancy: preliminary comparison of outcomes with bone marrow transplantation. , 1996, Bone marrow transplantation.

[43]  T. Saito,et al.  Interferon gamma production by natural killer (NK) cells and NK1.1+ T cells upon NKR-P1 cross-linking , 1996, The Journal of experimental medicine.

[44]  A. Santoro,et al.  High incidence of chronic GVHD after primary allogeneic peripheral blood stem cell transplantation in patients with hematologic malignancies. , 1996, Bone marrow transplantation.

[45]  N. Schmitz,et al.  PBPC grafts from healthy donors: analysis of CD34+ and CD3+ subpopulations. , 1996, Bone marrow transplantation.

[46]  R. Biassoni,et al.  The human leukocyte antigen (HLA)-C-specific "activatory" or "inhibitory" natural killer cell receptors display highly homologous extracellular domains but differ in their transmembrane and intracytoplasmic portions , 1996, The Journal of experimental medicine.

[47]  J. Ferrara,et al.  Pretreatment of donor mice with granulocyte colony-stimulating factor polarizes donor T lymphocytes toward type-2 cytokine production and reduces severity of experimental graft-versus-host disease. , 1995, Blood.

[48]  M. Hirokawa,et al.  Granulocyte colony-stimulating factor downregulates allogeneic immune responses by posttranscriptional inhibition of tumor necrosis factor-alpha production. , 1995, Blood.

[49]  T. Hartung,et al.  Effect of granulocyte colony-stimulating factor treatment on ex vivo blood cytokine response in human volunteers. , 1995, Blood.

[50]  W. Seaman,et al.  NKR-P1A is a target-specific receptor that activates natural killer cell cytotoxicity , 1995, The Journal of experimental medicine.

[51]  A. Deisseroth,et al.  Allogeneic blood stem cell transplantation for refractory leukemia and lymphoma: Potential advantage of blood over marrow allografts , 1995 .

[52]  N. Oyaizu,et al.  Cross-linking of CD4 molecules upregulates Fas antigen expression in lymphocytes by inducing interferon-gamma and tumor necrosis factor-alpha secretion. , 1994, Blood.

[53]  F. Ramsdell,et al.  Differential ability of Th1 and Th2 T cells to express Fas ligand and to undergo activation-induced cell death. , 1994, International immunology.

[54]  L. Lanier,et al.  Human NKR-P1A. A disulfide-linked homodimer of the C-type lectin superfamily expressed by a subset of NK and T lymphocytes. , 1994, Journal of immunology.

[55]  N. Schmitz,et al.  G‐CSF‐mobilized peripheral blood progenitor cells for allogeneic transplantation: safety, kinetics of mobilization, and composition of the graft , 1994, British journal of haematology.

[56]  W. Bensinger,et al.  Lymphocyte content in peripheral blood mononuclear cells collected after the administration of recombinant human granulocyte colony-stimulating factor. , 1994, Bone marrow transplantation.

[57]  L. Borysiewicz,et al.  Subsets of CD8 +, CD57+ cells in normal, healthy individuals: correlations with human cytomegalovirus (HCMV) carrier status, phenotypic and functional analyses , 1993, Clinical and experimental immunology.

[58]  C. Heusser,et al.  Detection of intracellular cytokines by flow cytometry. , 1993, Journal of immunological methods.

[59]  Y. Niitsu,et al.  Recombinant human granulocyte colony-stimulating factor can mobilize sufficient amounts of peripheral blood stem cells in healthy volunteers for allogeneic transplantation. , 1993, Bone marrow transplantation.

[60]  P. Greenberg,et al.  T-cell subsets and suppressor cells in human bone marrow. , 1992, Blood.

[61]  S. Strober,et al.  Studies of CD4- CD8- alpha beta bone marrow T cells with suppressor activity. , 1992, Journal of immunology.

[62]  A. Rimm,et al.  Graft-versus-leukemia reactions after bone marrow transplantation. , 1990, Blood.

[63]  J. Sprent,et al.  T cell subsets and graft-versus-host disease. , 1987, Transplantation.

[64]  D. Blaise,et al.  IMPACT OF T-CELL DEPLETION ON OUTCOME OF ALLOGENEIC BONE-MARROW TRANSPLANTATION FOR STANDARD-RISK LEUKAEMIAS , 1987, The Lancet.

[65]  P. Chomczyński,et al.  Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. , 1987, Analytical biochemistry.

[66]  S. Agarwal,et al.  Letter: Alpha-fetoprotein in Indian childhood cirrhosis. , 1974, Lancet.

[67]  D. Blaise,et al.  Allogeneic peripheral blood stem cell transplantation results in less alteration of early T cell compartment homeostasis than bone marrow transplantation , 2001, Bone Marrow Transplantation.

[68]  S. Singhal,et al.  Comparison of marrow and blood cell yields from the same donors in a double-blind, randomized study of allogeneic marrow vs blood stem cell transplantation , 2000, Bone Marrow Transplantation.

[69]  S. Nakao,et al.  Administration of G-CSF to normal individuals diminishes L-selectin+ T cells in the peripheral blood that respond better to alloantigen stimulation than L-selectin− T cells , 1999, Bone Marrow Transplantation.

[70]  K. Ino,et al.  Immunoregulatory cytokines in bone marrow and peripheral blood stem cell products , 1999, Bone Marrow Transplantation.

[71]  J. Talmadge,et al.  Comparison of monocyte-dependent T cell inhibitory activity in GM-CSF vs G-CSF mobilized PSC products , 1999, Bone Marrow Transplantation.

[72]  M. Mielcarek,et al.  Impaired Induction of the CD28-Responsive Complex in Granulocyte Colony-Stimulating Factor Mobilized CD4 T Cells , 1998 .

[73]  W. Timens Leucocyte typing VI. , 1997 .

[74]  G. Morgan,et al.  Allogeneic peripheral blood stem cell transplantation for haematological malignancies – an analysis of kinetics of engraftment and GVHD risk , 1997, Bone Marrow Transplantation.