Evolving molecules using multi-objective optimization: applying to ADME/Tox.

Modern drug discovery involves the simultaneous optimization of many physicochemical and biological properties that transcends the historical focus on bioactivity alone. The process of resolving many requirements is termed 'multi-objective optimization', and here we discuss how this can be used for drug discovery, focusing on evolutionary molecule design to incorporate optimal predicted absorption, distribution, metabolism, excretion and toxicity properties. We provide several examples of how Pareto optimization implemented in Pareto Ligand Designer can be used to make trade-offs between these different predicted or real molecular properties to result in better predicted compounds.

[1]  S. Bembenek,et al.  Ligand binding efficiency: trends, physical basis, and implications. , 2008, Journal of medicinal chemistry.

[2]  Tudor I. Oprea,et al.  The Design of Leadlike Combinatorial Libraries. , 1999, Angewandte Chemie.

[3]  Robin C. Purshouse,et al.  Improving the Pharmaceutical R&D Process: How Simulation Can Support Management Decision Making , 2006 .

[4]  Alexander Golbraikh,et al.  QSAR Modeling of the Blood–Brain Barrier Permeability for Diverse Organic Compounds , 2008, Pharmaceutical Research.

[5]  Sean Ekins,et al.  Computer Applications in Pharmaceutical Research and Development , 2008 .

[6]  T Hemsel,et al.  Piezoelectric transducer design via multiobjective optimization. , 2006, Ultrasonics.

[7]  S. Ekins,et al.  Progress in predicting human ADME parameters in silico. , 2000, Journal of pharmacological and toxicological methods.

[8]  Valerie J Gillet,et al.  New directions in library design and analysis. , 2008, Current opinion in chemical biology.

[9]  Sean Ekins,et al.  Classification of Metabolites with Kernel-Partial Least Squares (K-PLS) , 2007, Drug Metabolism and Disposition.

[10]  Steven J Skerlos,et al.  Multi-criteria decision-making for optimization of product disassembly under multiple situations. , 2003, Environmental science & technology.

[11]  Thomas Bäck,et al.  The Molecule Evoluator. An Interactive Evolutionary Algorithm for the Design of Drug-Like Molecules , 2006, J. Chem. Inf. Model..

[12]  Yvonne C. Martin,et al.  Application of Belief Theory to Similarity Data Fusion for Use in Analog Searching and Lead Hopping , 2008, J. Chem. Inf. Model..

[13]  Magid Abou-Gharbia Discovery of innovative small molecule therapeutics. , 2009, Journal of medicinal chemistry.

[14]  Matthias Rarey,et al.  LoFT: Similarity-Driven Multiobjective Focused Library Design , 2010, J. Chem. Inf. Model..

[15]  C. Chong,et al.  New uses for old drugs , 2007, Nature.

[16]  Nathan Brown,et al.  Molecular optimization using computational multi-objective methods. , 2007, Current opinion in drug discovery & development.

[17]  Sean Ekins,et al.  Combined Computational Metabolite Prediction and Automated Structure-Based Analysis of Mass Spectrometric Data , 2008, Toxicology mechanisms and methods.

[18]  Andrew C. Good,et al.  An Empirical Process for the Design of High-Throughput Screening Deck Filters. , 2006 .

[19]  Gavin Harper,et al.  Evolving Interpretable Structure-Activity Relationships. 1. Reduced Graph Queries , 2008, J. Chem. Inf. Model..

[20]  Maykel Cruz-Monteagudo,et al.  Global antifungal profile optimization of chlorophenyl derivatives against Botrytis cinerea and Colletotrichum gloeosporioides. , 2009, Journal of agricultural and food chemistry.

[21]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[22]  María Suárez,et al.  Pareto optimization in computational protein design with multiple objectives , 2008, J. Comput. Chem..

[23]  S. Ekins,et al.  Present and future in vitro approaches for drug metabolism. , 2000, Journal of pharmacological and toxicological methods.

[24]  Peter J. Fleming,et al.  Combinatorial Library Design Using a Multiobjective Genetic Algorithm , 2002, J. Chem. Inf. Comput. Sci..

[25]  M. Lahanas,et al.  A hybrid evolutionary algorithm for multi-objective anatomy-based dose optimization in high-dose-rate brachytherapy. , 2003, Physics in medicine and biology.

[26]  Scott Boyer,et al.  New methods in predictive metabolism , 2002, J. Comput. Aided Mol. Des..

[27]  Bernadette Govaerts,et al.  Uncertainty propagation in multiresponse optimization using a desirability index , 2005 .

[28]  Simon J. F. Macdonald,et al.  Analysis of the Calculated Physicochemical Properties of Respiratory Drugs: Can We Design for Inhaled Drugs Yet? , 2009, J. Chem. Inf. Model..

[29]  M. Natália D. S. Cordeiro,et al.  Desirability‐based multiobjective optimization for global QSAR studies: Application to the design of novel NSAIDs with improved analgesic, antiinflammatory, and ulcerogenic profiles , 2008, J. Comput. Chem..

[30]  Johan Andersson,et al.  A survey of multiobjective optimization in engineering design , 2001 .

[31]  William J. Welsh,et al.  New Predictive Models for Blood–Brain Barrier Permeability of Drug-like Molecules , 2008, Pharmaceutical Research.

[32]  Johann Gasteiger,et al.  A novel workflow for the inverse QSPR problem using multiobjective optimization , 2006, J. Comput. Aided Mol. Des..

[33]  Bruno Boulanger,et al.  Towards a new age of virtual ADME/TOX and multidimensional drug discovery , 2002, J. Comput. Aided Mol. Des..

[34]  Renaldo Mendoza,et al.  ALARM NMR: a rapid and robust experimental method to detect reactive false positives in biochemical screens. , 2005, Journal of the American Chemical Society.

[35]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[36]  J J Baldwin,et al.  Prediction of drug absorption using multivariate statistics. , 2000, Journal of medicinal chemistry.

[37]  Ryan T. Strachan,et al.  Screening the receptorome: an efficient approach for drug discovery and target validation. , 2006, Drug discovery today.

[38]  Valerie J Gillet,et al.  Multiobjective optimization in quantitative structure-activity relationships: deriving accurate and interpretable QSARs. , 2002, Journal of medicinal chemistry.

[39]  G. Derringer,et al.  Simultaneous Optimization of Several Response Variables , 1980 .

[40]  G. Rishton,et al.  Molecular diversity in the context of leadlikeness: compound properties that enable effective biochemical screening. , 2008, Current opinion in chemical biology.

[41]  Constantinos S. Pattichis,et al.  De Novo Drug Design Using Multiobjective Evolutionary Graphs , 2009, J. Chem. Inf. Model..

[42]  W Patrick Walters,et al.  Prediction of 'drug-likeness'. , 2002, Advanced drug delivery reviews.

[43]  Sean Ekins,et al.  Integrating computer-based de novo drug design and multidimensional filtering for desirable drugs , 2002 .

[44]  Yi-Chin Fang,et al.  Optical design and multiobjective optimization of miniature zoom optics with liquid lens element. , 2009, Applied optics.

[45]  Xicheng Wang,et al.  An effective docking strategy for virtual screening based on multi-objective optimization algorithm , 2009, BMC Bioinformatics.

[46]  Amedeo Caflisch,et al.  Fragment-Based de Novo Ligand Design by Multiobjective Evolutionary Optimization , 2008, J. Chem. Inf. Model..

[47]  Anthony E. Klon,et al.  Improved Naïve Bayesian Modeling of Numerical Data for Absorption, Distribution, Metabolism and Excretion (ADME) Property Prediction , 2006, J. Chem. Inf. Model..

[48]  Bernadette Govaerts,et al.  Distribution of desirability index in multicriteria optimization using desirability functions based on the cumulative distribution function of the standard normal , 2005 .

[49]  Bernard Faller,et al.  Metabolic soft spot identification and compound optimization in early discovery phases using MetaSite and LC-MS/MS validation. , 2009, Journal of medicinal chemistry.

[50]  Brett A Tounge,et al.  Ligand efficiency and fragment-based drug discovery. , 2009, Drug discovery today.

[51]  Gerhard F. Ecker In silico screening of promiscuous targets and antitargets , 2005 .

[52]  M. Gleeson Generation of a set of simple, interpretable ADMET rules of thumb. , 2008, Journal of medicinal chemistry.

[53]  Joshua D. Knowles,et al.  Closed-loop, multiobjective optimization of two-dimensional gas chromatography/mass spectrometry for serum metabolomics. , 2007, Analytical chemistry.

[54]  Kenneth M Merz,et al.  Prediction of aqueous solubility of a diverse set of compounds using quantitative structure-property relationships. , 2003, Journal of medicinal chemistry.

[55]  Reinaldo Molina Ruiz,et al.  Desirability-based methods of multiobjective optimization and ranking for global QSAR studies. Filtering safe and potent drug candidates from combinatorial libraries. , 2008, Journal of combinatorial chemistry.

[56]  Aurélien Grosdidier,et al.  EADock: Docking of small molecules into protein active sites with a multiobjective evolutionary optimization , 2007, Proteins.

[57]  Tudor I. Oprea Current trends in lead discovery: Are we looking for the appropriate properties? , 2002, J. Comput. Aided Mol. Des..

[58]  Steven L. Dixon,et al.  Bioactive Diversity and Screening Library Selection via Affinity Fingerprinting , 1998, J. Chem. Inf. Comput. Sci..

[59]  C George,et al.  A Balancing Act: Optimizing a Product's Properties , 1994 .

[60]  R. Remmel,et al.  Drug Metabolism Databases and High-Throughput Testing During Drug Design and Development. , 2002 .

[61]  Sean Ekins,et al.  Reengineering the pharmaceutical industry by crash-testing molecules. , 2005, Drug discovery today.

[62]  B. E. Evans,et al.  Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. , 1988, Journal of medicinal chemistry.

[63]  Thierry Kogej,et al.  ProSAR: A New Methodology for Combinatorial Library Design , 2009, J. Chem. Inf. Model..

[64]  Steven L. Dixon,et al.  In silico models for the prediction of dose-dependent human hepatotoxicity , 2003, J. Comput. Aided Mol. Des..

[65]  M. Gelb,et al.  Rational modification of a candidate cancer drug for use against Chagas disease. , 2009, Journal of medicinal chemistry.

[66]  A. Hopkins,et al.  Ligand efficiency: a useful metric for lead selection. , 2004, Drug discovery today.

[67]  A. Bender,et al.  Modeling Promiscuity Based on in vitro Safety Pharmacology Profiling Data , 2007, ChemMedChem.

[68]  Fumiyoshi Yamashita,et al.  Novel Hierarchical Classification and Visualization Method for Multiobjective Optimization of Drug Properties: Application to Structure—Activity Relationship Analysis of Cytochrome P450 Metabolism. , 2008 .

[69]  R. W. Hansen,et al.  The price of innovation: new estimates of drug development costs. , 2003, Journal of health economics.

[70]  J. DiMasi New drug development in the United States from 1963 to 1999 , 2001, Clinical pharmacology and therapeutics.

[71]  I Zwir,et al.  Automated Biological Sequence Description by Genetic Multiobjective Generalized Clustering , 2002, Annals of the New York Academy of Sciences.

[72]  Jeffrey R. Huth,et al.  Enhancement of chemical rules for predicting compound reactivity towards protein thiol groups , 2007, J. Comput. Aided Mol. Des..

[73]  Thomas Bäck,et al.  11 2 Evolutionary Algorithms in Drug Design , 2010 .

[74]  Dominique Douguet,et al.  A genetic algorithm for the automated generation of small organic molecules: Drug design using an evolutionary algorithm , 2000, J. Comput. Aided Mol. Des..

[75]  Jian Zhang,et al.  Focused combinatorial library design based on structural diversity, druglikeness and binding affinity score. , 2005, Journal of combinatorial chemistry.

[76]  A. M. Geoffrion Proper efficiency and the theory of vector maximization , 1968 .

[77]  D. Rogers,et al.  Using Extended-Connectivity Fingerprints with Laplacian-Modified Bayesian Analysis in High-Throughput Screening Follow-Up , 2005, Journal of biomolecular screening.

[78]  Robert D. Clark,et al.  Using a staged multi-objective optimization approach to find selective pharmacophore models , 2009, J. Comput. Aided Mol. Des..

[79]  Mathias Wawer,et al.  Navigating structure-activity landscapes. , 2009, Drug discovery today.

[80]  John Delaney,et al.  Modelling iterative compound optimisation using a self-avoiding walk. , 2009, Drug discovery today.

[81]  Gavin Harper,et al.  Evolving Interpretable Structure-Activity Relationship Models. 2. Using Multiobjective Optimization To Derive Multiple Models , 2008, J. Chem. Inf. Model..

[82]  S. Bandyopadhyay,et al.  Combining Pareto-optimal clusters using supervised learning for identifying co-expressed genes , 2009, BMC Bioinformatics.

[83]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. , 2001, Advanced drug delivery reviews.

[84]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[85]  D. Kell,et al.  'Metabolite-likeness' as a criterion in the design and selection of pharmaceutical drug libraries. , 2009, Drug discovery today.

[86]  Tudor I. Oprea,et al.  Is There a Difference between Leads and Drugs? A Historical Perspective , 2001, J. Chem. Inf. Comput. Sci..

[87]  K. Stewart,et al.  Drug Guru: a computer software program for drug design using medicinal chemistry rules. , 2006, Bioorganic & medicinal chemistry.

[88]  C. Wermuth Selective optimization of side activities: another way for drug discovery. , 2004, Journal of medicinal chemistry.

[89]  Luis A. Sarabia,et al.  Vectorial optimization as a methodogical alternative to desirability function , 2006 .

[90]  Scott Boyer,et al.  Reaction Site Mapping of Xenobiotic Biotransformations. , 2007 .

[91]  Steven L. Dixon,et al.  Use of Robust Classification Techniques for the Prediction of Human Cytochrome P450 2D6 Inhibition. , 2003 .

[92]  Douglas B. Kell,et al.  Multiobjective Optimization in Bioinformatics and Computational Biology , 2007, IEEE ACM Trans. Comput. Biol. Bioinform..

[93]  Tudor I. Oprea,et al.  Rapid Evaluation of Synthetic and Molecular Complexity for in Silico Chemistry , 2005, J. Chem. Inf. Model..

[94]  Bruno Boulanger,et al.  A Fast Exchange Algorithm for Designing Focused Libraries in Lead Optimization. , 2005 .

[95]  L Lasagna,et al.  New drug development in the United States from 1963 to 1990 , 1991, Clinical pharmacology and therapeutics.

[96]  J. T. Metz,et al.  Ligand efficiency indices as guideposts for drug discovery. , 2005, Drug discovery today.

[97]  Alexander Hillisch,et al.  Improving the hit-to-lead process: data-driven assessment of drug-like and lead-like screening hits. , 2006, Drug discovery today.

[98]  S. O'Brien,et al.  Greater than the sum of its parts: combining models for useful ADMET prediction. , 2005, Journal of medicinal chemistry.

[99]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[100]  Trudi Wright,et al.  Optimizing the Size and Configuration of Combinatorial Libraries , 2003, J. Chem. Inf. Comput. Sci..

[101]  Han van de Waterbeemd,et al.  Property-Based Design: Optimization of Drug Absorption and Pharmacokinetics , 2001 .

[102]  Thomas Bäck,et al.  Combining Aggregation with Pareto Optimization: A Case Study in Evolutionary Molecular Design , 2009, EMO.

[103]  Brian Hudson,et al.  Strategic Pooling of Compounds for High-Throughput Screening , 1999, J. Chem. Inf. Comput. Sci..

[104]  Jean M. Severin,et al.  Toxicological evaluation of thiol-reactive compounds identified using a la assay to detect reactive molecules by nuclear magnetic resonance. , 2007, Chemical research in toxicology.

[105]  Camille G Wermuth,et al.  Selective optimization of side activities: the SOSA approach. , 2006, Drug discovery today.

[106]  György M. Keserü,et al.  The influence of lead discovery strategies on the properties of drug candidates , 2009, Nature Reviews Drug Discovery.

[107]  Gábor Csányi,et al.  Gaussian Processes: A Method for Automatic QSAR Modeling of ADME Properties , 2007, J. Chem. Inf. Model..

[108]  Johann Gasteiger,et al.  Structure and reaction based evaluation of synthetic accessibility , 2007, J. Comput. Aided Mol. Des..

[109]  Jing-Tao Wu,et al.  Strategy of utilizing in vitro and in vivo ADME tools for lead optimization and drug candidate selection. , 2005, Current topics in medicinal chemistry.

[110]  Kjell Johnson,et al.  Integrated oral bioavailability projection using in vitro screening data as a selection tool in drug discovery. , 2004, International journal of pharmaceutics.

[111]  Jasper A Vrugt,et al.  Improved evolutionary optimization from genetically adaptive multimethod search , 2007, Proceedings of the National Academy of Sciences.

[112]  Peter Willett,et al.  GALAHAD: 1. Pharmacophore identification by hypermolecular alignment of ligands in 3D , 2006, J. Comput. Aided Mol. Des..

[113]  Bryan L. Roth,et al.  Finding New Tricks For Old Drugs: An Efficient Route For Public-Sector Drug Discovery , 2005, Nature Reviews Drug Discovery.

[114]  S. Ekins Predicting undesirable drug interactions with promiscuous proteins in silico. , 2004, Drug discovery today.

[115]  D K Agrafiotis,et al.  Kolmogorov-Smirnov statistic and its application in library design. , 2000, Journal of molecular graphics & modelling.

[116]  Valerie J. Gillet,et al.  Incorporating partial matches within multiobjective pharmacophore identification , 2006, J. Comput. Aided Mol. Des..

[117]  Sean Ekins,et al.  Shape signatures: new descriptors for predicting cardiotoxicity in silico. , 2008, Chemical research in toxicology.

[118]  G. Schneider,et al.  Voyages to the (un)known: adaptive design of bioactive compounds. , 2009, Trends in biotechnology.

[119]  Dimitris K. Agrafiotis,et al.  Multiobjective optimization of combinatorial libraries , 2002, J. Comput. Aided Mol. Des..

[120]  William J. Welsh,et al.  Hybrid Scoring and Classification Approaches to Predict Human Pregnane X Receptor Activators , 2009, Pharmaceutical Research.

[121]  Sun Choi,et al.  Balancing focused combinatorial libraries based on multiple GPCR ligands , 2006, J. Comput. Aided Mol. Des..

[122]  Irwin D. Kuntz,et al.  A genetic algorithm for structure-based de novo design , 2001, J. Comput. Aided Mol. Des..

[123]  Thomas Bäck,et al.  Evolutionary Algorithms in Drug Design , 2005, Natural Computing.

[124]  F. Darvas,et al.  Diversity Measures for Enhancing ADME Admissibility of Combinatorial Libraries. , 2000 .