Machine Learning Topological Phases with a Solid-State Quantum Simulator.

We report an experimental demonstration of a machine learning approach to identify exotic topological phases, with a focus on the three-dimensional chiral topological insulators. We show that the convolutional neural networks-a class of deep feed-forward artificial neural networks with widespread applications in machine learning-can be trained to successfully identify different topological phases protected by chiral symmetry from experimental raw data generated with a solid-state quantum simulator. Our results explicitly showcase the exceptional power of machine learning in the experimental detection of topological phases, which paves a way to study rich topological phenomena with the machine learning toolbox.

[1]  Maissam Barkeshli,et al.  Correlated topological insulators and the fractional magnetoelectric effect , 2010, 1005.1076.

[2]  R. Bertlmann,et al.  Bloch vectors for qudits , 2008, 0806.1174.

[3]  D-L Deng,et al.  Probe of three-dimensional chiral topological insulators in an optical lattice. , 2014, Physical review letters.

[4]  Ray Freeman,et al.  Adiabatic pulses for wideband inversion and broadband decoupling , 1995 .

[5]  Roger G. Melko,et al.  Machine learning phases of matter , 2016, Nature Physics.

[6]  Shinsei Ryu,et al.  Chiral topological insulators, superconductors, and other competing orders in three dimensions , 2010 .

[7]  K. Klitzing The quantized Hall effect , 1986 .

[8]  Wenjian Hu,et al.  Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination. , 2017, Physical review. E.

[9]  Andrew C. Potter,et al.  Classification of Interacting Electronic Topological Insulators in Three Dimensions , 2013, Science.

[10]  Xiao-Liang Qi,et al.  Fractional topological insulators in three dimensions. , 2010, Physical review letters.

[11]  D. Hsieh,et al.  A topological Dirac insulator in a quantum spin Hall phase , 2008, Nature.

[12]  Dong-Ling Deng,et al.  Machine Learning Topological States , 2016, 1609.09060.

[13]  Juan Carrasquilla,et al.  Machine learning quantum phases of matter beyond the fermion sign problem , 2016, Scientific Reports.

[14]  Sebastian Johann Wetzel,et al.  Unsupervised learning of phase transitions: from principal component analysis to variational autoencoders , 2017, Physical review. E.

[15]  Alexei Kitaev,et al.  Periodic table for topological insulators and superconductors , 2009, 0901.2686.

[16]  Ken Shiozaki,et al.  Electromagnetic and thermal responses of Z topological insulators and superconductors in odd spatial dimensions. , 2013, Physical review letters.

[17]  Xiao-Liang Qi,et al.  Topological field theory of time-reversal invariant insulators , 2008, 0802.3537.

[18]  Yi Zhang,et al.  Quantum Loop Topography for Machine Learning. , 2016, Physical review letters.

[19]  C. Weeks,et al.  Flat bands with nontrivial topology in three dimensions , 2012 .

[20]  Dong-Ling Deng,et al.  Quantized electromagnetic response of three-dimensional chiral topological insulators , 2015 .

[21]  D. Deng,et al.  Quantum Entanglement in Neural Network States , 2017, 1701.04844.

[22]  Shinsei Ryu,et al.  Classification of topological insulators and superconductors in three spatial dimensions , 2008, 0803.2786.

[23]  Shinsei Ryu,et al.  Classification of topological quantum matter with symmetries , 2015, 1505.03535.

[24]  Shinsei Ryu,et al.  Topological insulators and superconductors: tenfold way and dimensional hierarchy , 2009, 0912.2157.

[25]  Lu-Ming Duan,et al.  Efficient representation of quantum many-body states with deep neural networks , 2017, Nature Communications.

[26]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[27]  Lei Wang,et al.  Discovering phase transitions with unsupervised learning , 2016, 1606.00318.

[28]  R. Melko,et al.  Machine Learning Phases of Strongly Correlated Fermions , 2016, Physical Review X.

[29]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[30]  S. Huber,et al.  Learning phase transitions by confusion , 2016, Nature Physics.

[31]  H. J. Mclaughlin,et al.  Learn , 2002 .

[32]  T. Fukui,et al.  Chern Numbers in Discretized Brillouin Zone: Efficient Method of Computing (Spin) Hall Conductances , 2005, cond-mat/0503172.

[33]  Christopher Mudry,et al.  Noncommutative geometry for three-dimensional topological insulators , 2012 .

[34]  Kazuki Hasebe,et al.  Chiral topological insulator on Nambu 3-algebraic geometry , 2014, 1403.7816.

[35]  Pengfei Zhang,et al.  Machine Learning Topological Invariants with Neural Networks , 2017, Physical review letters.

[36]  Dong-Ling Deng,et al.  Direct probe of topological order for cold atoms , 2014 .

[37]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[38]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[39]  Yi Zhang,et al.  Machine learning Z 2 quantum spin liquids with quasiparticle statistics , 2017, 1705.01947.

[40]  R. Barends,et al.  Observation of topological transitions in interacting quantum circuits , 2014, Nature.

[41]  L. Childress,et al.  Robust control of individual nuclear spins in diamond , 2009, 0909.3896.

[42]  Z. K. Liu,et al.  Experimental Realization of a Three-Dimensional Topological Insulator , 2010 .

[43]  D. Vanderbilt,et al.  Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. , 2008, Physical review letters.

[44]  X.-X. Yuan,et al.  Observation of Topological Links Associated with Hopf Insulators in a Solid-State Quantum Simulator* , 2017, 1705.00781.

[45]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.