A Global View of Brownian Penalisations

The present volume is an expository monograph on Brownian penalisation, an important new notion the authors introduced to the theory of Wiener measure and Markov processes. It will serve as a concise guidebook for students and researchers who study probability theory, stochastic processes and mathematical finance.Published by Mathematical Society of Japan and distributed by World Scientific Publishing Co. for all markets

[1]  M. Yor,et al.  LOCAL LIMIT THEOREMS FOR BROWNIAN ADDITIVE FUNCTIONALS AND PENALISATION OF BROWNIAN PATHS, IX , 2010 .

[2]  J. Najnudel CONSTRUCTION OF AN EDWARDS’ PROBABILITY MEASURE ON C ( R + , R ) , 2010 .

[3]  P. Salminen,et al.  On subexponentiality of the Lévy measure of the inverse local time; with applications to penalizations , 2009 .

[4]  M. Yor,et al.  Penalisations of multidimensional Brownian motion, VI , 2009 .

[5]  M. Yor,et al.  Brownian penalisations related to excursion lengths, VII , 2009 .

[6]  M. Yor,et al.  Penalising Brownian Paths , 2009 .

[7]  M. Yor,et al.  Ten penalisation results of Brownian motion involving its one-sided supremum until first and last passage times, VIII , 2008 .

[8]  Penalising symmetric stable Lévy paths , 2008, 0807.4336.

[9]  M. Yor,et al.  On constants related to the choice of the local time at 0, and the corresponding Itô measure for Bessel processes with dimension d = 2(1 − α ), 0 < α < 1 , 2008 .

[10]  M. Yor,et al.  Penalizing a BES ( d ) process (0 < d < 2) with a function of its local time, V , 2008 .

[11]  J. Najnudel Construction of an Edwards' probability measure on $\mathcal{C} (\mathbb{R}_+, \mathbb{R})$ , 2008, 0801.2751.

[12]  M. Yor,et al.  Penalisations of Brownian motion with its maximum and minimum processes as weak forms of Skorokhod embedding, X , 2008 .

[13]  A remarkable σ-finite measure on C(R+,R) related to many Brownian penalisations , 2007 .

[14]  M. Yor,et al.  Some extensions of Pitman and Ray-Knight theorems for penalized Brownian motions and their local times, IV , 2007 .

[15]  Penalizations of the Brownian motion with a functional of its local times , 2007, math/0701526.

[16]  P. Salminen,et al.  Tanaka Formula for Symmetric Lévy Processes , 2005, math/0501182.

[17]  P. Salminen,et al.  On the excursion theory for linear diffusions , 2006, math/0612687.

[18]  M. Yor,et al.  Limiting Laws Associated with Brownian Motion Perturbed by Normalized Exponential Weights, I , 2008 .

[19]  M. Yor,et al.  Some penalisations of the Wiener measure , 2006 .

[20]  M. Yor,et al.  Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time, II , 2005, math/0510575.

[21]  M. Yor,et al.  Limiting laws for long Brownian bridges perturbed by their one-sided maximum, III , 2005, Period. Math. Hung..

[22]  J. Obłój A complete characterization of local martingales which are functions of Brownian motion and its maximum , 2005, math/0504462.

[23]  M. Yor,et al.  Some measure-valued Markov processes attached to occupation times of Brownian motion , 2000 .

[24]  L. Chaumont Excursion normalisée, méandre et pont pour les processus de Lévy stables , 1997 .

[25]  A. Borodin,et al.  Handbook of Brownian Motion - Facts and Formulae , 1996 .

[26]  J. Pitman,et al.  Decomposition at the maximum for excursions and bridges of one-dimensional diffusions , 1996 .

[27]  J. Azéma,et al.  Sur les zeros des martingales continues , 1992 .

[28]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[29]  P. Salminen,et al.  On spectral measures of strings and excursions of quasi diffusions , 1989 .

[30]  M. Yor,et al.  Valeurs principales associées aux temps locaux browniens , 1987 .

[31]  J. Pitman,et al.  Asymptotic Laws of Planar Brownian Motion , 1986 .

[32]  J. Gall Une approche elementaipe des theoremes de decomposition de Williams , 1986 .

[33]  J. -. Gall,et al.  Sur le temps local d'intersection du mouvement brownien plan et la methode de renormalisation de Varadhan , 1985 .

[34]  Thesis in preparation , 1985 .

[35]  Paavo Salminen,et al.  One-dimensional diffusions and their exit spaces , 1984 .

[36]  J. Westwater On Edwards' model for polymer chains. III. Borel summability , 1982 .

[37]  J. Westwater On Edwards' model for polymer chains , 1981 .

[38]  M. Westwater On Edwards' model for long polymer chains , 1980 .

[39]  T. Jeulin Semi-Martingales et Grossissement d’une Filtration , 1980 .

[40]  J. Azéma,et al.  Une solution simple au probleme de Skorokhod , 1979 .

[41]  M. Degroot,et al.  Probability and Statistics , 1977 .

[42]  J. Pitman One-dimensional Brownian motion and the three-dimensional Bessel process , 1974, Advances in Applied Probability.

[43]  Hans Föllmer,et al.  The exit measure of a supermartingale , 1972 .

[44]  D. Revuz,et al.  Mesures associées aux fonctionnelles additives de Markov. II , 1970 .

[45]  P. Meyer,et al.  Probabilités et potentiel , 1966 .

[46]  R. A. Silverman,et al.  Special functions and their applications , 1966 .

[47]  F. Spitzer Principles Of Random Walk , 1965 .

[48]  Frank Spitzer,et al.  Some theorems concerning 2-dimensional Brownian motion , 1958 .

[49]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .