Stability Characteristics of a Conical Aerospace Plane Concept

Data on stability characteristics of a conical aerospace plane concept were collected for a number of model geometry variations and test conditions, using several NASA-Langley wind tunnels spanning Mach range 0.1-6. The baseline configuration of this plane concept incorporated a 5-deg cone forebody, a 75.96-deg delta wing, a 16-deg leading-edge sweep deployable canard, and a centerline vertical tail. The key results pertinent to stability considerations about all three axes of the model are presented together with data on the effect of the canard on pitch stability, the effect of vertical tail on lateral-directional stability, and the effect of forebody geometry on yaw asymmetries. The experimental stability data are compared with the results from an engineering predictive code.