Time-domain beam propagation method and its application to photonic crystal circuits
暂无分享,去创建一个
M. Koshiba | M. Koshiba | Yasuhide Tsuji | Y. Tsuji | Y. Tsuji | M. Hikari | M. Hikari | M. Koshiba
[1] Raj Mittra,et al. A finite-element-method frequency-domain application of the perfectly matched layer (PML) concept , 1995 .
[2] M. Koshiba,et al. A wide-angle finite-element beam propagation method , 1996, IEEE Photonics Technology Letters.
[3] Masanori Koshiba,et al. A wide-angle beam propagation method based on a finite element scheme , 1997 .
[4] J. Yamauchi,et al. Analysis of antireflection coatings using the FD-TD method with the PML absorbing boundary condition , 1996, IEEE Photonics Technology Letters.
[5] Masanori Koshiba,et al. Finite element beam propagation method with perfectly matched layer boundary conditions , 1999 .
[6] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[7] Raj Mittra,et al. An application of the perfectly matched layer (PML) concept to the finite element method frequency domain analysis of scattering problems , 1995 .
[8] Reinhard Maerz,et al. Results of benchmark tests for different numerical BPM algorithms , 1994, Integrated Optoelectronics.
[9] Masanori Koshiba,et al. Finite element beam propagation method for three-dimensional optical waveguide structures , 1997 .
[10] K. Yee. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .
[11] M. Koshiba,et al. Finite‐element analysis of dielectric slab waveguide with finite periodic corrugation , 1987 .
[12] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[13] Sai T. Chu,et al. A finite-difference time-domain method for the design and analysis of guided-wave optical structures , 1989 .
[14] J. Joannopoulos,et al. High Transmission through Sharp Bends in Photonic Crystal Waveguides. , 1996, Physical review letters.
[15] G. R. Hadley,et al. Wide-angle beam propagation using Pade approximant operators. , 1992, Optics letters.
[16] D. Decoster,et al. An improved time-domain beam propagation method for integrated optics components , 1997, IEEE Photonics Technology Letters.
[17] Pao-Lo Liu,et al. Slow-wave finite-difference beam propagation method , 1995, IEEE Photonics Technology Letters.