Asynchronous multicanonical basin hopping method and its application to cobalt nanoclusters.

The multicanonical basin hopping (MUBH) method, which uses a multicanonical weight in the basin hopping (BH) Monte Carlo method, was found to be very efficient for global optimization of large-scale systems such as Lennard-Jones clusters containing more than 150 atoms. We have implemented an asynchronous parallel version of the MUBH method using the message passing interface (MPI) to take advantage of the full usage of multiprocessors in either a homogeneous or heterogeneous computational environment. Based on the intrinsic properties of the Monte Carlo method, this MPI implementation used the task parallelism to minimize interthread data communication. For a Co nanocluster consisting of N atoms, we have applied the asynchronous multicanonical basin hopping (AMUBH) method (for 181 < N < or = 200), together with BH (for 2 < or = N < 150) and MUBH (for 150 < or = N < or = 180), to search for the molecular configuration of the global energy minimum. AMUBH becomes the only practical computational scheme for locating the energy minimum within realistic computational time for a relatively large cluster.

[1]  B. Berg,et al.  Multicanonical algorithms for first order phase transitions , 1991 .

[2]  Huafeng Xu,et al.  Multicanonical jump walk annealing: An efficient method for geometric optimization , 2000 .

[3]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[4]  Chung-Lin Wu,et al.  Self-limiting size distribution of supported cobalt nanoclusters at room temperature. , 2003, Physical review letters.

[5]  Berg,et al.  Multicanonical ensemble: A new approach to simulate first-order phase transitions. , 1992, Physical review letters.

[6]  A. Uhlherr Parallel Monte Carlo simulations by asynchronous domain decomposition , 2003 .

[7]  Estela Blaisten-Barojas,et al.  STRUCTURE AND DYNAMICS OF ALKALI-METAL CLUSTERS AND FISSION OF HIGHLY CHARGED CLUSTERS , 1998 .

[8]  J. Doye,et al.  Tetrahedral global minimum for the 98-atom Lennard-Jones cluster. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  Harold A. Scheraga,et al.  MONTE CARLO SIMULATION OF A FIRST-ORDER TRANSITION FOR PROTEIN FOLDING , 1994 .

[10]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[11]  Bernd A. Berg,et al.  Introduction to Multicanonical Monte Carlo Simulations , 1999, cond-mat/9909236.

[12]  Y. Okamoto,et al.  Thermodynamics of Helix-Coil Transitions Studied by Multicanonical Algorithms , 1995, chem-ph/9505006.

[13]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[14]  Bernd A. Berg,et al.  Multicanonical procedure for continuum peptide models , 2000, J. Comput. Chem..

[15]  David J. Wales,et al.  Global minima for rare gas clusters containing one alkali metal ion , 2003 .

[16]  Shun-Yun Hu,et al.  Multicanonical parallel simulations of proteins with continuous potentials , 2001, J. Comput. Chem..

[17]  Bruce J. Berne,et al.  Multicanonical jump walking: A method for efficiently sampling rough energy landscapes , 1999 .

[18]  R. Kubo Electronic Properties of Metallic Fine Particles. I. , 1962 .

[19]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[20]  D. J. Adams,et al.  The implementation of fluid phase Monte Carlo on the DAP , 1988 .

[21]  Karl-Heinz Meiwes-Broer,et al.  Metal clusters at surfaces : structure, quantum properties, physical chemistry , 2000 .

[22]  W. Halperin,et al.  Quantum size effects in metal particles , 1986 .

[23]  David J. Wales,et al.  Energy landscapes, global optimization and dynamics of the polyalanine Ac(ala)8NHMe , 2001 .

[24]  Bernd A. Berg Algorithmic aspects of multicanonical simulations , 1997 .

[25]  Yuko Okamoto,et al.  Prediction of peptide conformation by multicanonical algorithm: New approach to the multiple‐minima problem , 1993, J. Comput. Chem..

[26]  Jonathan P. K. Doye Identifying structural patterns in disordered metal clusters , 2003 .

[27]  Julia M. Goodfellow,et al.  Parallelization strategies for molecular simulation using the Monte Carlo algorithm , 1993, J. Comput. Chem..

[28]  Karo Michaelian,et al.  Structure and magnetism of cobalt clusters , 2003 .

[29]  H. Scheraga,et al.  Global optimization of clusters, crystals, and biomolecules. , 1999, Science.

[30]  M. Iwamatsu,et al.  Structures of metallic clusters: Mono- and polyvalent metals , 2002 .

[31]  Lee,et al.  New Monte Carlo algorithm: Entropic sampling. , 1993, Physical review letters.

[32]  Wing-Ki Liu,et al.  Multicanonical basin hopping: a new global optimization method for complex systems. , 2004, The Journal of chemical physics.

[33]  David Romero,et al.  The optimal geometry of Lennard-Jones clusters: 148-309 , 1999 .

[34]  Multicanonical simulations step by step , 2002, cond-mat/0206333.

[35]  Raju P. Gupta Lattice relaxation at a metal surface , 1981 .

[36]  H. Scheraga,et al.  Monte Carlo-minimization approach to the multiple-minima problem in protein folding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Karl-Heinz Meiwes-Broer,et al.  Metal Clusters at Surfaces , 2000 .

[38]  Rosato,et al.  Tight-binding potentials for transition metals and alloys. , 1993, Physical review. B, Condensed matter.

[39]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..