Next-generation sequencing-based genome diagnostics across clinical genetics centers: implementation choices and their effects

Implementation of next-generation DNA sequencing (NGS) technology into routine diagnostic genome care requires strategic choices. Instead of theoretical discussions on the consequences of such choices, we compared NGS-based diagnostic practices in eight clinical genetic centers in the Netherlands, based on genetic testing of nine pre-selected patients with cardiomyopathy. We highlight critical implementation choices, including the specific contributions of laboratory and medical specialists, bioinformaticians and researchers to diagnostic genome care, and how these affect interpretation and reporting of variants. Reported pathogenic mutations were consistent for all but one patient. Of the two centers that were inconsistent in their diagnosis, one reported to have found ‘no causal variant’, thereby underdiagnosing this patient. The other provided an alternative diagnosis, identifying another variant as causal than the other centers. Ethical and legal analysis showed that informed consent procedures in all centers were generally adequate for diagnostic NGS applications that target a limited set of genes, but not for exome- and genome-based diagnosis. We propose changes to further improve and align these procedures, taking into account the blurring boundary between diagnostics and research, and specific counseling options for exome- and genome-based diagnostics. We conclude that alternative diagnoses may infer a certain level of ‘greediness’ to come to a positive diagnosis in interpreting sequencing results. Moreover, there is an increasing interdependence of clinic, diagnostics and research departments for comprehensive diagnostic genome care. Therefore, we invite clinical geneticists, physicians, researchers, bioinformatics experts and patients to reconsider their role and position in future diagnostic genome care.

Edwin Cuppen | Marcel Nelen | Wilfred F J van IJcken | Isaac J Nijman | Christel E M Kockx | Derek Butler | Erik Sistermans | Adalberto Costessi | Marjolein Kriek | Quinten Waisfisz | Martijn Vermaat | Jan D H Jongbloed | W. V. van IJcken | J. Veltman | E. Cuppen | R. Hennekam | M. Nelen | R. Sinke | W. van Workum | R. Kamps | Q. Waisfisz | B. van der Zwaag | J. D. den Dunnen | M. Vermaat | J. de Ligt | I. Nijman | M. Vogel | B. de Koning | J. Saris | E. Sistermans | M. V. van Slegtenhorst | D. Halley | F. Sleutels | C. Kockx | G. Santen | M. Kriek | M. van den Hout | K. Kraaijeveld | M. Mannens | C. Ploem | J. Jongbloed | N. van der Stoep | O. Mook | A. van den Wijngaard | M. Elferink | L. Johansson | Joris A Veltman | Joep de Ligt | Bert van der Zwaag | Nienke van der Stoep | G. Claes | Marianne van Tienhoven | Wilbert van Workum | Bart de Koning | Rick Kamps | Gijs Santen | Raoul Hennekam | A. Costessi | Derek Butler | T. Vrijenhoek | E. Kranendonk | W. Dorlijn | Winfried van Eyndhoven | Steven van Hove | R. H. Lekanne dit Deprez | H. Lunstroo | M. Rijnen | M. van Tienhoven | Janneke Marjan Weiss | H. Ijntema | Johan den Dunnen | Richard Sinke | Arthur van den Wijngaard | Terry Vrijenhoek | Ken Kraaijeveld | Martin Elferink | Elcke Kranendonk | Godelieve Claes | Wim Dorlijn | Winfried van Eyndhoven | Dicky J J Halley | Mirjam C G N van den Hout | Steven van Hove | Lennart F Johansson | Ronald Lekanne Dit Deprez | Hans Lunstroo | Marcel Mannens | Olaf R Mook | Corrette Ploem | Marco Rijnen | Jasper J Saris | Marjon van Slegtenhorst | Frank Sleutels | Maartje Vogel | Janneke Marjan Weiss | Helger Ijntema | R. H. Lekanne Dit Deprez | W. V. van Ijcken | Elcke J Kranendonk | Marianne van Tienhoven | W. V. van Workum | Helger Ijntema | Wilbert A. T. van Workum

[1]  Ton Feuth,et al.  Diagnostic genome profiling in mental retardation. , 2005, American journal of human genetics.

[2]  Isaac S. Kohane,et al.  Technical desiderata for the integration of genomic data into Electronic Health Records , 2012, J. Biomed. Informatics.

[3]  Francisco M. De La Vega,et al.  Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. , 2009, Genome research.

[4]  S. Antonarakis,et al.  A DNA resequencing array for pathogenic mutation detection in hypertrophic cardiomyopathy , 2008, Human mutation.

[5]  Kelly Schoch,et al.  Clinical application of exome sequencing in undiagnosed genetic conditions , 2012, Journal of Medical Genetics.

[6]  Roger D. Cox,et al.  A Mouse Model for the Metabolic Effects of the Human Fat Mass and Obesity Associated FTO Gene , 2009, PLoS genetics.

[7]  J. Veltman,et al.  Genome and exome sequencing in the clinic: unbiased genomic approaches with a high diagnostic yield. , 2012, Pharmacogenomics.

[8]  Loss-of-function mutations in SLC 30 A 8 protect against type 2 diabetes , 2014 .

[9]  Gail Geller,et al.  Public Expectations for Return of Results from Large-Cohort Genetic Research , 2008, The American journal of bioethics : AJOB.

[10]  Bradley P. Coe,et al.  Multiplex Targeted Sequencing Identifies Recurrently Mutated Genes in Autism Spectrum Disorders , 2012, Science.

[11]  Emily H Turner,et al.  Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome , 2010, Nature Genetics.

[12]  Pieter B. T. Neerincx,et al.  The Genome of the Netherlands: design, and project goals , 2013, European Journal of Human Genetics.

[13]  Joseph K. Pickrell,et al.  A Systematic Survey of Loss-of-Function Variants in Human Protein-Coding Genes , 2012, Science.

[14]  Eric D Green,et al.  The Complexities of Genomic Identifiability , 2013, Science.

[15]  Dawei Li,et al.  The diploid genome sequence of an Asian individual , 2008, Nature.

[16]  Pieter B. T. Neerincx,et al.  Supplementary Information Whole-genome sequence variation , population structure and demographic history of the Dutch population , 2022 .

[17]  S. Turner,et al.  Real-time DNA sequencing from single polymerase molecules. , 2010, Methods in enzymology.

[18]  Nilesh J Samani,et al.  The personal genome—the future of personalised medicine? , 2010, The Lancet.

[19]  Euan A Ashley,et al.  Challenges in the clinical application of whole-genome sequencing , 2010, The Lancet.

[20]  Q. Waisfisz,et al.  Informed consent for exome sequencing in diagnostics: exploring first experiences and views of professionals and patients , 2013, Clinical genetics.

[21]  Marc Via i García An integrated map of genetic variation from 1,092 human genomes , 2012 .

[22]  John Broxholme,et al.  Next-generation sequencing (NGS) as a diagnostic tool for retinal degeneration reveals a much higher detection rate in early-onset disease , 2012, European Journal of Human Genetics.

[23]  P. Stankiewicz,et al.  Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy. , 2010, The New England journal of medicine.

[24]  Timothy B. Stockwell,et al.  The Diploid Genome Sequence of an Individual Human , 2007, PLoS biology.

[25]  Christian Gilissen,et al.  De novo mutations of SETBP1 cause Schinzel-Giedion syndrome , 2010, Nature Genetics.

[26]  Jungsuk Kim,et al.  Recent advances in nanopore sequencing , 2012, Electrophoresis.

[27]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[28]  Thomas Meitinger,et al.  Loss-of-function mutations in SLC30A8 protect against type 2 diabetes , 2014, Nature Genetics.

[29]  J. Veltman,et al.  Challenges for implementing next-generation sequencing-based genome diagnostics: it's also the people, not just the machines. , 2013, Personalized medicine.

[30]  H. Bayley,et al.  Continuous base identification for single-molecule nanopore DNA sequencing. , 2009, Nature nanotechnology.

[31]  Peter Kraft,et al.  Re-Ranking Sequencing Variants in the Post-GWAS Era for Accurate Causal Variant Identification , 2013, PLoS genetics.

[32]  D. Srivastava,et al.  Genetics of Human Cardiovascular Disease , 2012, Cell.

[33]  B. V. van Bon,et al.  Diagnostic exome sequencing in persons with severe intellectual disability. , 2012, The New England journal of medicine.

[34]  H. Mefford Diagnostic exome sequencing--are we there yet? , 2012, The New England journal of medicine.

[35]  J. Veltman,et al.  De novo mutations in human genetic disease , 2012, Nature Reviews Genetics.

[36]  Jeroen F. J. Laros,et al.  LOVD v.2.0: the next generation in gene variant databases , 2011, Human mutation.

[37]  Quinten Waisfisz,et al.  Best Practice Guidelines for the Use of Next‐Generation Sequencing Applications in Genome Diagnostics: A National Collaborative Study of Dutch Genome Diagnostic Laboratories , 2013, Human mutation.

[38]  Christian Gilissen,et al.  Disease gene identification strategies for exome sequencing , 2012, European Journal of Human Genetics.

[39]  Peter Pop,et al.  Routine Individual Feedback on Requests for Diagnostic Tests , 1996, Medical decision making : an international journal of the Society for Medical Decision Making.

[40]  Christian Gilissen,et al.  Next-generation genetic testing for retinitis pigmentosa , 2012, Human mutation.

[41]  N. Hawkins,et al.  Data sharing in genomics — re-shaping scientific practice , 2009, Nature Reviews Genetics.

[42]  S. Mundlos,et al.  The Human Phenotype Ontology , 2010, Clinical genetics.

[43]  Jay Shendure,et al.  Identification by whole-genome resequencing of gene defect responsible for severe hypercholesterolemia , 2010, Human molecular genetics.

[44]  David P Bick,et al.  Making a definitive diagnosis: Successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease , 2011, Genetics in Medicine.

[45]  M. Modell,et al.  Raising the profile of genetics in primary care , 2004, Nature Reviews Genetics.

[46]  Christian Gilissen,et al.  A de novo paradigm for mental retardation , 2010, Nature Genetics.

[47]  J. Lupski,et al.  The complete genome of an individual by massively parallel DNA sequencing , 2008, Nature.

[48]  Raymond K. Auerbach,et al.  The real cost of sequencing: higher than you think! , 2011, Genome Biology.

[49]  C. Semsarian,et al.  Multiple Mutations in Genetic Cardiovascular Disease: A Marker of Disease Severity? , 2009, Circulation. Cardiovascular genetics.

[50]  Stef van Lieshout,et al.  Dominant missense mutations in ABCC9 cause Cantú syndrome , 2012, Nature Genetics.

[51]  Jane Kaye,et al.  Implementing a successful data-management framework: the UK10K managed access model , 2013, Genome Medicine.

[52]  Elaine R. Mardis,et al.  A decade’s perspective on DNA sequencing technology , 2011, Nature.

[53]  J. Shendure,et al.  Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data , 2011, Nature Reviews Genetics.

[54]  J. Lupski,et al.  Human genome sequencing in health and disease. , 2012, Annual review of medicine.

[55]  Nicholas R. Hardiker,et al.  Incorporating personalized gene sequence variants, molecular genetics knowledge, and health knowledge into an EHR prototype based on the Continuity of Care Record standard , 2012, J. Biomed. Informatics.

[56]  Muin J Khoury,et al.  Deploying whole genome sequencing in clinical practice and public health: Meeting the challenge one bin at a time , 2011, Genetics in Medicine.

[57]  Christian Gilissen,et al.  Diagnostic exome sequencing in persons with severe intellectual disability. , 2012, New England Journal of Medicine.

[58]  P. Stenson,et al.  The Human Gene Mutation Database: 2008 update , 2009, Genome Medicine.

[59]  S. Turner,et al.  Real-Time DNA Sequencing from Single Polymerase Molecules , 2009, Science.

[60]  M. Ferber,et al.  Expanding DNA diagnostic panel testing: is more better? , 2011, Expert review of molecular diagnostics.

[61]  Dominique Stoppa-Lyonnet,et al.  Evaluation of in silico splice tools for decision‐making in molecular diagnosis , 2008, Human mutation.

[62]  Richard M Weinshilboum,et al.  Genomics and drug response. , 2011, The New England journal of medicine.

[63]  Nicholas Katsanis,et al.  Molecular genetic testing and the future of clinical genomics , 2013, Nature Reviews Genetics.

[64]  A. Sidow,et al.  Functional analyses of variants reveal a significant role for dominant negative and common alleles in oligogenic Bardet–Biedl syndrome , 2010, Proceedings of the National Academy of Sciences.

[65]  P. Shannon,et al.  Exome sequencing identifies the cause of a Mendelian disorder , 2009, Nature Genetics.

[66]  L. Biesecker Hypothesis-generating research and predictive medicine , 2013, Genome research.

[67]  S. Levy,et al.  Exome sequencing supports a de novo mutational paradigm for schizophrenia , 2011, Nature Genetics.

[68]  G. Church,et al.  Public Access to Genome-Wide Data: Five Views on Balancing Research with Privacy and Protection , 2009, PLoS genetics.

[69]  J. Hardy,et al.  Use of next-generation sequencing and other whole-genome strategies to dissect neurological disease , 2012, Nature Reviews Neuroscience.

[70]  W. Grody,et al.  ACMG recommendations for standards for interpretation and reporting of sequence variations: Revisions 2007 , 2008, Genetics in Medicine.

[71]  E. Mardis The impact of next-generation sequencing technology on genetics. , 2008, Trends in genetics : TIG.