Developing and programming a watershed traversal algorithm (WTA) in GRID-DEM and adapting it to hydrological processes

A methodology for programming hydrological processes into watersheds using grid-type digital elevation models (DEMs) is investigated. This methodology is based on the basic configuration of the flow directions structure in the DEM, which is stored in files where information about topological relations and other frequently used features are saved. Some basic functions for managing topological data that significantly simplify the source code programming are also presented and described. We develop an algorithm that runs the entire drainage network in a watershed in both directions, upwards and downwards, which is ideal for incorporating structural models of hydrological processes that occur in basins or assessing its characteristics. The main attribute of this method is that information about hydrological processes and properties is transmitted during the routing from one area to another of the basin. The information is used when developing models of these hydrological processes and transmitted throughout the basin. At the end of the article, using this methodology with the SHEE software is illustrated with some examples.

[1]  John F. O'Callaghan,et al.  The extraction of drainage networks from digital elevation data , 1984, Comput. Vis. Graph. Image Process..

[2]  José Angel Sánchez Navarro,et al.  Hidrología de crecidas en pequeñas y medianas cuencas: aplicación con modelos digitales del terreno , 2011 .

[3]  John S. Kimball,et al.  Automated upscaling of river networks for macroscale hydrological modeling , 2008 .

[4]  W. Green,et al.  Studies on Soil Phyics. , 1911, The Journal of Agricultural Science.

[5]  Andrea Tribe,et al.  Automated recognition of valley lines and drainage networks from grid digital elevation models: a review and a new method , 1992 .

[6]  M. Franchini,et al.  Path‐based methods for the determination of nondispersive drainage directions in grid‐based digital elevation models , 2003 .

[7]  L. Martz,et al.  The treatment of flat areas and depressions in automated drainage analysis of raster digital elevation models , 1998 .

[8]  Chenghu Zhou,et al.  An adaptive approach to selecting a flow‐partition exponent for a multiple‐flow‐direction algorithm , 2007, Int. J. Geogr. Inf. Sci..

[9]  L. A. Richards Capillary conduction of liquids through porous mediums , 1931 .

[10]  J. Cunge,et al.  Discussion and Closure: Volume Conservation in Variable Parameter Muskingum-Cunge Method , 2001 .

[11]  M. Julià,et al.  Constructing a saturated hydraulic conductivity map of Spain using pedotransfer functions and spatial prediction , 2004 .

[12]  Yosoon Choi,et al.  A new algorithm to calculate weighted flow-accumulation from a DEM by considering surface and underground stormwater infrastructure , 2012, Environ. Model. Softw..

[13]  A. Skidmore Terrain position as mapped from a gridded digital elevation model , 1990 .

[14]  T. G. Freeman,et al.  Calculating catchment area with divergent flow based on a regular grid , 1991 .

[15]  David H. Douglas,et al.  Detection of Surface-Specific Points by Local Parallel Processing of Discrete Terrain Elevation Data , 1975 .

[16]  G. Ampt,et al.  Studies on Soil Physics: Part II — The Permeability of an Ideal Soil to Air and Water , 1912, The Journal of Agricultural Science.

[17]  J. Fairfield,et al.  Drainage networks from grid digital elevation models , 1991 .

[18]  L. Martz,et al.  An outlet breaching algorithm for the treatment of closed depressions in a raster DEM , 1999 .

[19]  P. Holmgren Multiple flow direction algorithms for runoff modelling in grid based elevation models: An empirical evaluation , 1994 .

[20]  M. Ferrer,et al.  Generación automática del número de curva con sistemas de información geográfica , 1995 .

[21]  Jin Teng,et al.  Impact of DEM accuracy and resolution on topographic indices , 2010, Environ. Model. Softw..

[22]  R. Horton The Rôle of infiltration in the hydrologic cycle , 1933 .

[23]  Nicholas J. Lea,et al.  An Aspect-Driven Kinematic Routing Algorithm , 1992 .

[24]  J. Salas,et al.  Introduction to Hydrology , 2014 .

[25]  Lawrence E. Band,et al.  A terrain-based watershed information system , 1989 .

[26]  M. Costa-Cabral,et al.  Digital Elevation Model Networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas , 1994 .

[27]  Susan K. Jenson,et al.  AUTOMATED DERIVATION OF HYDROLOGIC BASIN CHARACTERISTICS FROM DIGITAL ELEVATION MODEL DATA , 1984 .

[28]  Charles J Vörösmarty,et al.  Scaling gridded river networks for macroscale hydrology: Development, analysis, and control of error , 2001 .

[29]  P. J. J. Desmet,et al.  Comparison of Routing Algorithms for Digital Elevation Models and Their Implications for Predicting Ephemeral Gullies , 1996, Int. J. Geogr. Inf. Sci..

[30]  L. Band Topographic Partition of Watersheds with Digital Elevation Models , 1986 .

[31]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[32]  農業土木学会応用水文研究部会,et al.  応用水文 = Applied hydrology , 1991 .

[33]  Wolfgang Schwanghart,et al.  TopoToolbox: A set of Matlab functions for topographic analysis , 2010, Environ. Model. Softw..

[34]  K. Beven,et al.  THE PREDICTION OF HILLSLOPE FLOW PATHS FOR DISTRIBUTED HYDROLOGICAL MODELLING USING DIGITAL TERRAIN MODELS , 1991 .

[35]  Vincent M. Caruso,et al.  Digital elevation models , 1983 .

[36]  D. Tarboton A new method for the determination of flow directions and upslope areas in grid digital elevation models , 1997 .

[37]  David M. Mark,et al.  Part 4: Mathematical, Algorithmic and Data Structure Issues: Automated Detection Of Drainage Networks From Digital Elevation Models , 1984 .

[38]  M. Dimas,et al.  Aportación de la teledetección para la determinación del parámetro hidrológico del número de curva , 1998 .

[39]  L. Martz,et al.  The assignment of drainage direction over flat surfaces in raster digital elevation models , 1997 .

[40]  Richard H. Hawkins,et al.  Curve Number Hydrology : State of the Practice , 2008 .

[41]  W Lu Digital terrain models: An overview of DTM generation and interpolation issues , 2001 .

[42]  Warren. Viessman Introduction to hydrology , 1972 .

[43]  bak gwansu,et al.  An Adaptive Approach to , 2006 .

[44]  S. K. Jenson,et al.  Extracting topographic structure from digital elevation data for geographic information-system analysis , 1988 .

[45]  Lawrence W. Martz,et al.  Numerical definition of drainage network and subcatchment areas from digital elevation models , 1992 .

[46]  J. A. Cunge,et al.  On The Subject Of A Flood Propagation Computation Method (Musklngum Method) , 1969 .

[47]  Closure of "Volume Conservation in Variable Parameter Muskingum-Cunge Method" , 1999 .