Challenges and opportunities towards fast-charging battery materials

[1]  R. Cabeza,et al.  Present and Future , 2008 .

[2]  Kristen A. Severson,et al.  Data-driven prediction of battery cycle life before capacity degradation , 2019, Nature Energy.

[3]  V. Wood,et al.  Characterization and performance evaluation of lithium-ion battery separators , 2018, Nature Energy.

[4]  Ilias Belharouak,et al.  Identifying the limiting electrode in lithium ion batteries for extreme fast charging , 2018, Electrochemistry Communications.

[5]  Long-Qing Chen,et al.  Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects , 2018, Nature Energy.

[6]  Piero Pianetta,et al.  Chemomechanical interplay of layered cathode materials undergoing fast charging in lithium batteries , 2018, Nano Energy.

[7]  Jian Li,et al.  Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy , 2018, Nature Energy.

[8]  Yayuan Liu,et al.  Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode , 2018, Nature Communications.

[9]  V. Wood X-ray tomography for battery research and development , 2018, Nature Reviews Materials.

[10]  J. Maier,et al.  High Lithium Transference Number Electrolytes Containing Tetratriflylpropene's Lithium Salt. , 2018, The journal of physical chemistry letters.

[11]  Yasuhiro Harada,et al.  High-energy, fast-charging, long-life lithium-ion batteries using TiNb2O7 anodes for automotive applications , 2018, Journal of Power Sources.

[12]  S. Choudhury,et al.  Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries , 2018, Nature.

[13]  Shanhai Ge,et al.  Fast charging of lithium-ion batteries at all temperatures , 2018, Proceedings of the National Academy of Sciences.

[14]  Yi Cui,et al.  Materials for lithium-ion battery safety , 2018, Science Advances.

[15]  Xiqian Yu,et al.  Probing the Complexities of Structural Changes in Layered Oxide Cathode Materials for Li-Ion Batteries during Fast Charge-Discharge Cycling and Heating. , 2018, Accounts of chemical research.

[16]  L. Cavallo,et al.  New Insights on Graphite Anode Stability in Rechargeable Batteries: Li Ion Coordination Structures Prevail over Solid Electrolyte Interphases , 2018 .

[17]  K. Gering,et al.  A Study of the Physical Properties of Li-Ion Battery Electrolytes Containing Esters , 2018 .

[18]  Ji‐Guang Zhang,et al.  New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM. , 2017, Nano letters.

[19]  James Francfort,et al.  Enabling fast charging – Battery thermal considerations , 2017 .

[20]  Richard Barney Carlson,et al.  Enabling fast charging – A battery technology gap assessment , 2017 .

[21]  Richard Barney Carlson,et al.  Enabling fast charging – Vehicle considerations , 2017 .

[22]  Richard Barney Carlson,et al.  Enabling fast charging - Infrastructure and economic considerations , 2017 .

[23]  Yi Yu,et al.  Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy , 2017, Science.

[24]  B. McCloskey,et al.  Promising Routes to a High Li+ Transference Number Electrolyte for Lithium Ion Batteries , 2017 .

[25]  Jaephil Cho,et al.  Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes , 2017, Nature Communications.

[26]  Richard Barney Carlson,et al.  Enabling Fast Charging: A Technology Gap Assessment , 2017 .

[27]  Marshall C. Smart,et al.  Factors Limiting Li + Charge Transfer Kinetics in Li-Ion Batteries , 2017 .

[28]  Pulickel M. Ajayan,et al.  A materials perspective on Li-ion batteries at extreme temperatures , 2017, Nature Energy.

[29]  Hsing-Yu Tuan,et al.  High-performance lithium-ion batteries with 1.5 μm thin copper nanowire foil as a current collector , 2017 .

[30]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[31]  Jianming Zheng,et al.  Electrolyte additive enabled fast charging and stable cycling lithium metal batteries , 2017, Nature Energy.

[32]  Jun Lu,et al.  State-of-the-art characterization techniques for advanced lithium-ion batteries , 2017, Nature Energy.

[33]  L. M. Rodriguez-Martinez,et al.  Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. , 2017, Chemical Society Reviews.

[34]  B. McCloskey,et al.  Nonaqueous Polyelectrolyte Solutions as Liquid Electrolytes with High Lithium Ion Transference Number and Conductivity , 2017 .

[35]  Dingchang Lin,et al.  Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries , 2017, Science Advances.

[36]  B. Scrosati,et al.  Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries , 2016 .

[37]  Xiqian Yu,et al.  High‐Rate Charging Induced Intermediate Phases and Structural Changes of Layer‐Structured Cathode for Lithium‐Ion Batteries , 2016 .

[38]  Federico Bella,et al.  Single-Ion Conducting Polymer Electrolytes for Lithium Metal Polymer Batteries that Operate at Ambient Temperature , 2016 .

[39]  Yi Cui,et al.  Graphite-Encapsulated Li-Metal Hybrid Anodes for High-Capacity Li Batteries , 2016 .

[40]  Martin Z. Bazant,et al.  Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles , 2016, Science.

[41]  Linsen Li,et al.  High-performance battery electrodes via magnetic templating , 2016, Nature Energy.

[42]  Florian Bouville,et al.  Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries , 2016, Nature Energy.

[43]  Gregory J. Offer,et al.  Surface Cooling Causes Accelerated Degradation Compared to Tab Cooling for Lithium-Ion Pouch Cells , 2016 .

[44]  Yayuan Liu,et al.  Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. , 2016, Nature nanotechnology.

[45]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[46]  Hyun-Wook Lee,et al.  Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth , 2016, Nature Energy.

[47]  Lin Gu,et al.  Amorphous Red Phosphorus Embedded in Highly Ordered Mesoporous Carbon with Superior Lithium and Sodium Storage Capacity. , 2016, Nano letters.

[48]  Yuan Yang,et al.  Thermally conductive separator with hierarchical nano/microstructures for improving thermal management of batteries , 2016 .

[49]  Chaoyang Wang,et al.  Lithium-ion battery structure that self-heats at low temperatures , 2016, Nature.

[50]  Seung M. Oh,et al.  Poly(arylene ether)-Based Single-Ion Conductors for Lithium-Ion Batteries , 2016 .

[51]  Guangyuan Zheng,et al.  A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. , 2015, Nature nanotechnology.

[52]  Xiaodong Chen,et al.  Rational material design for ultrafast rechargeable lithium-ion batteries. , 2015, Chemical Society reviews.

[53]  Cher Ming Tan,et al.  Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature , 2015, Scientific Reports.

[54]  Winfried W. Wilcke,et al.  Flexible Ion‐Conducting Composite Membranes for Lithium Batteries , 2015 .

[55]  Seok-Gwang Doo,et al.  Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density , 2015, Nature Communications.

[56]  Qian Cheng,et al.  KOH etched graphite for fast chargeable lithium-ion batteries , 2015 .

[57]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[58]  Ozan Toprakci,et al.  A review of recent developments in membrane separators for rechargeable lithium-ion batteries , 2014 .

[59]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[60]  Hui Wu,et al.  Improving battery safety by early detection of internal shorting with a bifunctional separator , 2014, Nature Communications.

[61]  Lip Huat Saw,et al.  Effect of thermal contact resistances on fast charging of large format lithium ion batteries , 2014 .

[62]  Karena W. Chapman,et al.  Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes , 2014, Science.

[63]  B. Liaw,et al.  A review of lithium deposition in lithium-ion and lithium metal secondary batteries , 2014 .

[64]  Paul V Braun,et al.  High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes , 2013, Nature Communications.

[65]  L. Archer,et al.  High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites , 2013 .

[66]  Yet-Ming Chiang,et al.  Design of Battery Electrodes with Dual‐Scale Porosity to Minimize Tortuosity and Maximize Performance , 2013, Advanced materials.

[67]  Peng Lu,et al.  Effects of Inhomogeneities—Nanoscale to Mesoscale—on the Durability of Li-Ion Batteries , 2013 .

[68]  Michel Armand,et al.  A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries , 2013, Nature Communications.

[69]  Jie Wang,et al.  Electrochemical performance of modified artificial graphite as anode material for lithium ion batteries , 2013, Ionics.

[70]  Bruno Scrosati,et al.  A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery. , 2011, Nature communications.

[71]  Yunhui Huang,et al.  New Anode Framework for Rechargeable Lithium Batteries , 2011 .

[72]  T. Fuller,et al.  A Critical Review of Thermal Issues in Lithium-Ion Batteries , 2011 .

[73]  Marshall C. Smart,et al.  Lithium-Ion Electrolytes Containing Ester Cosolvents for Improved Low Temperature Performance , 2010 .

[74]  Andreas Nyman,et al.  Analysis of the Polarization in a Li-Ion Battery Cell by Numerical Simulations , 2010 .

[75]  Jonathan P. Wright,et al.  Determining grain resolved stresses in polycrystalline materials using three-dimensional X-ray diffraction , 2010 .

[76]  Kang Xu,et al.  Differentiating contributions to "ion transfer" barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[77]  Anton Van der Ven,et al.  Lithium Diffusion in Graphitic Carbon , 2010, 1108.0576.

[78]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[79]  S. Komaba,et al.  Functional interface of polymer modified graphite anode , 2009 .

[80]  K. Zaghib,et al.  Quantifying tortuosity in porous Li-ion battery materials , 2009 .

[81]  T. Abe,et al.  Lithium-Ion Transfer at the Interface Between Lithium-Ion Conductive Ceramic Electrolyte and Liquid Electrolyte-A Key to Enhancing the Rate Capability of Lithium-Ion Batteries , 2005 .

[82]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[83]  Bruce Dunn,et al.  Three-dimensional battery architectures. , 2004, Chemical reviews.

[84]  Subbarao Surampudi,et al.  Use of Organic Esters as Cosolvents in Electrolytes for Lithium-Ion Batteries with Improved Low Temperature Performance , 2002 .

[85]  R. Marzke,et al.  High Li + Self-Diffusivity and Transport Number in Novel Electrolyte Solutions , 2001 .

[86]  Michikazu Hara,et al.  Structural and Kinetic Characterization of Lithium Intercalation into Carbon Anodes for Secondary Lithium Batteries , 1995 .

[87]  Marc Doyle,et al.  The importance of the lithium ion transference number in lithium/polymer cells , 1994 .

[88]  Yunhui Gong,et al.  High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture , 2019, Materials Today.

[89]  V. Viswanathan,et al.  — Practical Challenges Hindering the Development of Solid State Li Ion Batteries , 2017 .

[90]  Kevin G. Gallagher,et al.  Optimizing areal capacities through understanding the limitations of lithium-ion electrodes , 2016 .

[91]  J. C. Burns,et al.  In-Situ Detection of Lithium Plating Using High Precision Coulometry , 2015 .

[92]  M. Winter,et al.  A Mechanically Robust and Highly Ion‐Conductive Polymer‐Blend Coating for High‐Power and Long‐Life Lithium‐Ion Battery Anodes , 2015, Advanced materials.

[93]  Viktor Hacker,et al.  Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes , 2014 .

[94]  Vincent Chevrier,et al.  In Situ Detection of Lithium Plating on Graphite Electrodes by Electrochemical Calorimetry , 2013 .

[95]  D. Holdstock Past, present--and future? , 2005, Medicine, conflict, and survival.

[96]  Chaoyang Wang,et al.  Analysis of Electrochemical and Thermal Behavior of Li-Ion Cells , 2003 .

[97]  Henry Eyring,et al.  Advances and Perspectives , 1975 .