Optimization and partial purification of beta-galactosidase production by Aspergillus niger isolated from Brazilian soils using soybean residue

[1]  Zainab Bibi,et al.  Purification and catalytic behavior optimization of lactose degrading β-galactosidase from Aspergillus nidulans , 2018, Journal of Food Science and Technology.

[2]  P. Abdelnur,et al.  Sugarcane Bagasse Hydrothermal Pretreatment Liquors as Suitable Carbon Sources for Hemicellulase Production by Aspergillus niger , 2018, BioEnergy Research.

[3]  Sara C. Silvério,et al.  β-galactosidase from Aspergillus lacticoffeatus: A promising biocatalyst for the synthesis of novel prebiotics. , 2017, International journal of food microbiology.

[4]  B. Prior,et al.  Biochemical characterization of three Aspergillus niger β-galactosidases , 2017 .

[5]  K. Patel,et al.  Kinetic and thermodynamic characterization of a halotolerant β‐galactosidase produced by halotolerant Aspergillus tubingensis GR1 , 2015, Journal of basic microbiology.

[6]  R. Gao,et al.  Cloning, purification and characterization of a thermostable β-galactosidase from Thermotoga naphthophila RUK-10 , 2014 .

[7]  Xiaohu Fan,et al.  Production and secretion of Lactobacillus crispatus β-galactosidase in Pichia pastoris. , 2013, Protein expression and purification.

[8]  K. Isobe,et al.  Characterization of new β-galactosidase from acidophilic fungus, Teratosphaeria acidotherma AIU BGA-1. , 2013, Journal of bioscience and bioengineering.

[9]  K. Isobe,et al.  Acidophilic fungus, Teratosphaeria acidotherma AIU BGA-1, produces multiple forms of intracellular β-galactosidase. , 2013, Journal of bioscience and bioengineering.

[10]  Kenthorai Raman Jegannathan,et al.  Environmental assessment of enzyme use in industrial production – a literature review , 2013 .

[11]  C. Bernal,et al.  Improvement of thermal stability of β-galactosidase from Bacillus circulans by multipoint covalent immobilization in hierarchical macro-mesoporous silica , 2012 .

[12]  A. M. Kayastha,et al.  A β-galactosidase from chick pea (Cicer arietinum) seeds: its purification, biochemical properties and industrial applications. , 2012, Food chemistry.

[13]  S. Kalil,et al.  Formulation of Culture Medium with Agroindustrial Waste for β-Galactosidase Production from Kluyveromyces marxianus ATCC 16045 , 2012, Food and Bioprocess Technology.

[14]  F. Siqueira,et al.  The hydrolysis of agro-industrial residues by holocellulose-degrading enzymes , 2012, Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology].

[15]  Carla Oliveira,et al.  Recombinant microbial systems for improved β-galactosidase production and biotechnological applications. , 2011, Biotechnology advances.

[16]  Jean Philippe Palma Révillion,et al.  Utilização da β-galactosidase para prevenção da cristalização em doce de leite , 2010 .

[17]  G. Walsh,et al.  Engineering of a fungal β-galactosidase to remove product inhibition by galactose , 2010, Applied Microbiology and Biotechnology.

[18]  G. Walsh,et al.  A novel acid-stable, acid-active β-galactosidase potentially suited to the alleviation of lactose intolerance , 2010, Applied Microbiology and Biotechnology.

[19]  Ahmed Rebai,et al.  Optimization of alkaline protease production by Aspergillus clavatus ES1 in Mirabilis jalapa tuber powder using statistical experimental design , 2008, Applied Microbiology and Biotechnology.

[20]  G. Walsh,et al.  Application Relevant Studies of Fungal β-galactosidases with Potential Application in the Alleviation of Lactose Intolerance , 2008, Applied biochemistry and biotechnology.

[21]  Huafeng Shen,et al.  Optimization of the fermentation medium for alpha-galactosidase production from Aspergillus foetidus ZU-G1 using response surface methodology. , 2007, Journal of food science.

[22]  Sekar Sudharhsan,et al.  Physical and nutritional factors affecting the production of amylase from species of bacillus isolated from spoiled food waste , 2007 .

[23]  G. Walsh,et al.  Physicochemical characteristics of commercial lactases relevant to their application in the alleviation of lactose intolerance , 2006, Applied biochemistry and biotechnology.

[24]  Harish Kumar,et al.  Microbial production, immobilization and applications of β-D-galactosidase , 2006 .

[25]  Rajesh Patel,et al.  Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.: Production and optimization , 2005 .

[26]  Mahiran Basri,et al.  Physical factors affecting the production of organic solvent-tolerant protease by Pseudomonas aeruginosa strain K. , 2005, Bioresource technology.

[27]  Z. Nagy,et al.  Beta-galactosidase of Penicillium chrysogenum: production, purification, and characterization of the enzyme. , 2001, Protein expression and purification.

[28]  J. Khire,et al.  Characterization of a thermostable extracellular beta-galactosidase from a thermophilic fungus Rhizomucor sp. , 1999, Biochimica et biophysica acta.

[29]  D. O'toole Characteristics and use of okara, the soybean residue from soy milk production--a review. , 1999, Journal of agricultural and food chemistry.

[30]  V. Gekas,et al.  Hydrolysis of lactose: a literature review , 1985 .

[31]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[32]  M. H. L. Silveira,et al.  The potential of agro-industrial residues for production of holocellulase from filamentous fungi , 2010 .

[33]  A. F. Iemma,et al.  Planejamento de experimentos e otimização de processos: uma estratégia sequencial de planejamentos , 2005 .

[34]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[35]  P. Bergquist,et al.  Production of recombinant bleaching enzymes from thermophilic microorganisms in fungal hosts , 2002 .