Semiconductor metal oxide gas sensors: A review

Abstract This review paper encompasses a detailed study of semiconductor metal oxide (SMO) gas sensors. It provides for a detailed comparison of SMO gas sensors with other gas sensors, especially for ammonia gas sensing. Different parameters which affect the performance (sensitivity, selectivity and stability) of SMO gas sensors are discussed here under. This paper also gives an insight about the dopant or impurity induced variations in the SMO materials used for gas sensing. It is concluded that dopants enhance the properties of SMOs for gas sensing applications by changing their microstructure and morphology, activation energy, electronic structure or band gap of the metal oxides. In some cases, dopants create defects in SMOs by generating oxygen vacancy or by forming solid solutions. These defects enhance the gas sensing properties. Different nanostructures (nanowires, nanotubes, heterojunctions), other than nanopowders have also been studied in this review. At the end, examples of SMOs are given to illustrate the potential use of different SMO materials for gas sensing.

[1]  Jong Hak Kim,et al.  Dopant induced variations in microstructure and optical properties of CeO2 nanoparticles , 2011 .

[2]  P. T. Moseley,et al.  Progress in the development of semiconducting metal oxide gas sensors: a review , 2017 .

[3]  R. Moos,et al.  Nanosized titania derived from a novel sol-gel process for ammonia gas sensor applications , 2011 .

[4]  R. P. Gupta,et al.  Oxide Materials for Development of Integrated Gas Sensors—A Comprehensive Review , 2004 .

[5]  Nicolae Barsan,et al.  Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles , 2006 .

[6]  N. Yamazoe New approaches for improving semiconductor gas sensors , 1991 .

[7]  N. Bârsan,et al.  Metal oxide-based gas sensor research: How to? , 2007 .

[8]  Elisabetta Comini,et al.  Metal oxide nanowire chemical sensors: innovation and quality of life , 2016 .

[9]  E. Traversa,et al.  The development of gas sensor for carbon monoxide monitoring using nanostructure of Nb–TiO2 , 2005 .

[10]  O. Antonova,et al.  Polymer film-based sensors for ammonia detection , 1992 .

[11]  R. Kumar,et al.  CuO nanosheets as potential scaffolds for gas sensing applications , 2017 .

[12]  P. Biswas,et al.  Flame aerosol reactor synthesis of nanostructured SnO2 thin films: High gas-sensing properties by control of morphology , 2010 .

[13]  A. Berg,et al.  Ammonia sensors and their applications - a review , 2005 .

[14]  David E. Williams Semiconducting oxides as gas-sensitive resistors , 1999 .

[15]  Ahmad Umar,et al.  Metal Oxide Nanostructures and Their Applications , 2009 .

[16]  P. T. Moseley,et al.  Materials selection for semiconductor gas sensors , 1992 .

[17]  N. Yamazoe,et al.  Nano-sized PdO loaded SnO2 nanoparticles by reverse micelle method for highly sensitive CO gas sensor , 2009 .

[18]  Daqiang Zhang,et al.  A Survey on Gas Sensing Technology , 2012, Sensors.

[19]  Ganesh Kumar Mani,et al.  A highly selective and wide range ammonia sensor—Nanostructured ZnO:Co thin film , 2015 .

[20]  Zhen Jin,et al.  Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review , 2012, Sensors.

[21]  Russell Binions,et al.  Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring , 2010, Sensors.

[22]  Maurizio Martino,et al.  Acetone and ethanol solid-state gas sensors based on TiO2 nanoparticles thin film deposited by matrix assisted pulsed laser evaporation , 2007 .

[23]  E. Comini Metal oxide nano-crystals for gas sensing. , 2006, Analytica chimica acta.

[24]  Carles Cané,et al.  Screen-printed nanoparticle tin oxide films for high-yield sensor microsystems , 2003 .

[25]  Zhiguang Guo,et al.  Engineering NiO sensitive materials and its ultra-selective detection of benzaldehyde. , 2016, Journal of colloid and interface science.

[26]  Sunghoon Park,et al.  Fabrication and NO2 gas sensing performance of TeO2-core/CuO-shell heterostructure nanorod sensors , 2014, Nanoscale Research Letters.

[27]  Jitae Kim,et al.  Studies on tin oxide-intercalated polyaniline nanocomposite for ammonia gas sensing applications , 2009 .

[28]  Anton Amann,et al.  Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors , 2015 .

[29]  Elson Longo,et al.  Development of metal oxide nanoparticles with high stability against particle growth using a metastable solid solution , 2002 .

[30]  J. Bonevich,et al.  Fabrication and gas sensing performance of parallel assemblies of metal oxide nanotubes supported by porous aluminum oxide membranes , 2009 .

[31]  Nguyen Van Hieu,et al.  On-chip growth of semiconductor metal oxide nanowires for gas sensors: A review , 2017 .

[32]  Ulrich Simon,et al.  Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? , 2006, Small.

[33]  Pelagia-Irene Gouma,et al.  Sensing of Organic Vapors by Flame-Made TiO2 Nanoparticles , 2006 .

[34]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[35]  Rabinder Henry,et al.  Analysis and Review of Tin Oxide-Based Chemoresistive Gas Sensor , 2016 .

[36]  G. Korotcenkov Metal oxides for solid-state gas sensors: What determines our choice? , 2007 .

[37]  D. M. Smyth The effects of dopants on the properties of metal oxides , 2000 .

[38]  C. G. Dighavkar,et al.  Semiconductor metal oxide compounds based gas sensors: A literature review , 2015, Frontiers of Materials Science.

[39]  Thin film deposition and characterization of pure and iron-doped electron-beam evaporated tungsten oxide for gas sensors , 2010 .

[40]  Jordi Arbiol,et al.  Surface activation by Pt-nanoclusters on titania for gas sensing applications , 2002 .

[41]  B. Hammer,et al.  Oxygen vacancies on TiO2(110) and their interaction with H2O and O2: A combined high-resolution STM and DFT study , 2005 .

[42]  Derek J. Fray,et al.  Nanostructured TiO2–CeO2 mixed oxides by an aqueous sol–gel process: Effect of Ce:Ti molar ratio on physical and sensing properties , 2010 .

[43]  S. Han,et al.  Micro-bead of nano-crystalline F-doped SnO2 as a sensitive hydrogen gas sensor , 2005 .

[44]  Wojtek Wlodarski,et al.  Investigation of sol–gel prepared CeO2–TiO2 thin films for oxygen gas sensing , 2003 .

[45]  Jun Chen,et al.  CuO particles and plates : Synthesis and gas-sensor application , 2008 .

[46]  P. Gouma,et al.  Comparison of sol–gel and ion beam deposited MoO3 thin film gas sensors for selective ammonia detection , 2003 .

[47]  Sheikh A. Akbar,et al.  Aluminum-doped TiO2 nano-powders for gas sensors , 2007 .

[48]  Tetsuya Kida,et al.  Highly sensitive NO2 sensors using lamellar-structured WO3 particles prepared by an acidification method , 2009 .

[49]  Giorgio Sberveglieri,et al.  TiO2 thin films by a novel sol–gel processing for gas sensor applications , 2000 .

[50]  A. Hierlemann,et al.  Microfabricated gas sensor systems with sensitive nanocrystalline metal-oxide films , 2006 .

[51]  P. N. Lisboa-Filho,et al.  Microstructural and morphological analysis of pure and Ce-doped tin dioxide nanoparticles , 2003 .

[52]  S. Semancik,et al.  Mesoporous nanoparticle TiO2 thin films for conductometric gas sensing on microhotplate platforms , 2006 .

[53]  A. R. Bari,et al.  Spray-pyrolized nanostructured CuO thin films for H2S gas sensor , 2013, International Nano Letters.

[54]  Nicolae Barsan,et al.  Flame spray synthesis of tin dioxide nanoparticles for gas sensing , 2004 .

[55]  S. Phanichphant,et al.  Semiconducting metal oxides as sensors for environmentally hazardous gases , 2011 .

[56]  R. A. Slepetys,et al.  Solid solution of aluminum oxide in rutile titanium dioxide , 1969 .

[57]  U. Diebold,et al.  Surface studies of gas sensing metal oxides. , 2007, Physical chemistry chemical physics : PCCP.

[58]  Sofian M. Kanan,et al.  Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection , 2009, Sensors.

[59]  Dong Xiang,et al.  Metal Oxide Gas Sensors: Sensitivity and Influencing Factors , 2010, Sensors.

[60]  Sheikh A. Akbar,et al.  A selective room temperature formaldehyde gas sensor using TiO2 nanotube arrays , 2011 .

[61]  G. Sberveglieri,et al.  Nickel Oxide Nanowires Growth by VLS Technique for Gas Sensing Application , 2015 .

[62]  E. Suh,et al.  TiO2 thin film gas sensor for monitoring ammonia , 2007 .

[63]  Junsheng Yu,et al.  Influence of polymerization temperature on NH3 response of PANI/TiO2 thin film gas sensor , 2008 .

[64]  Maolin Zhang,et al.  Improvement and mechanism for the fast response of a Pt/TiO2 gas sensor , 2010 .

[65]  Ghenadii Korotcenkov,et al.  Metal oxide composites in conductometric gas sensors: Achievements and challenges , 2017 .