On Convergence rate of Wiener-Ito expansion for generalized random variables

In this paper, we present a new result about the estimate of the cutoff error of the Wiener-Ito chaos expansion for a generalized random variable. As an application, we use the result to obtain an error estimate for the finite element approximation of the stochastic Helmholtz equation.

[1]  Yubin Yan,et al.  Galerkin Finite Element Methods for Stochastic Parabolic Partial Differential Equations , 2005, SIAM J. Numer. Anal..

[2]  F. Benth,et al.  Convergence Rates for Finite Element Approximations of Stochastic Partial Differential Equations , 1998 .

[3]  T. G. Theting,et al.  Solving wick-stochastic boundary value problems using a finite element method , 2000 .

[4]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[5]  T. Shardlow Weak Convergence of a Numerical Method for a Stochastic Heat Equation , 2003 .

[6]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[7]  E. Hausenblas Approximation for Semilinear Stochastic Evolution Equations , 2003 .

[8]  Gjermund Våge,et al.  Variational methods for PDEs aplied to stochastic partial differential equations , 1998 .

[9]  Qiang Du,et al.  Numerical Approximation of Some Linear Stochastic Partial Differential Equations Driven by Special Additive Noises , 2002, SIAM J. Numer. Anal..

[10]  Joseph E. Pasciak The Mathematical Theory of Finite Element Methods (Susanne C. Brenner and L. Ridgway Scott) , 1995, SIAM Rev..

[11]  R. Ghanem,et al.  A stochastic projection method for fluid flow. I: basic formulation , 2001 .

[12]  Zhimin Zhang,et al.  Finite element and difference approximation of some linear stochastic partial differential equations , 1998 .

[13]  Andreas Keese,et al.  Review of Recent Developments in the Numerical Solution of Stochastic Partial Differential Equations (Stochastic Finite Elements)A , 2003 .