Bayesian Models for Non‐linear Autoregressions

We discuss classes of Bayesian mixture models for nonlinear autoregressive times series, based on developments in semiparametric Bayesian density estimation in recent years. The development involves formal classes of multivariate discrete mixture distributions, providing flexibility in modeling arbitrary nonlinearities in time series structure and a formal inferential framework within which to address the problems of inference and prediction. The models relate naturally to existing kernel and related methods, threshold models and others, although they offer major advances in terms of parameter estimation and predictive calculations. Theoretic al and computational aspects are developed here, the latter involving efficient simulation of posterior and predictive distributions. Various examples illustrate our perspectives on identification and inference using this mixture approach

[1]  Michael A. West,et al.  Deconvolution of Mixtures in Analysis of Neural Synaptic Transmission , 1994 .

[2]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[3]  J. Ghosh Bayesian density estimation. , 1998 .

[4]  S. MacEachern,et al.  A semiparametric Bayesian model for randomised block designs , 1996 .

[5]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[6]  Peter E. Rossi,et al.  Bayesian Analysis of Stochastic Volatility Models , 1994 .

[7]  A. Bowman,et al.  A look at some data on the old faithful geyser , 1990 .

[8]  S. MacEachern Estimating normal means with a conjugate style dirichlet process prior , 1994 .

[9]  S. Chib,et al.  Bayes inference via Gibbs sampling of autoregressive time series subject to Markov mean and variance shifts , 1993 .

[10]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[11]  S. MacEachern,et al.  Estimating mixture of dirichlet process models , 1998 .

[12]  M. West,et al.  Hyperparameter estimation in Dirichlet process mixture models , 1992 .

[13]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[14]  Charles E. Clark,et al.  Monte Carlo , 2006 .

[15]  P. Müller,et al.  Bayesian curve fitting using multivariate normal mixtures , 1996 .

[16]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[17]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[18]  D. Spiegelhalter,et al.  Modelling Complexity: Applications of Gibbs Sampling in Medicine , 1993 .

[19]  M. West Bayesian Inference in Cyclical Component Dynamic Linear Models , 1995 .

[20]  Michael A. West,et al.  Assessing Mechanisms of Neural Synaptic Activity , 1993 .