Compact Compatible Topologies for Posets and Graphs

A topology on the vertex set of a comparability graph G is said to be compatible (respectively, weakly compatible) with G if each induced subgraph (respectively, each finite induced subgraph) is topologically connected if and only it it is graph-connected; a weakly compatible topology on the vertex set of a graph completely determines the graph structure. We consider here the problem of deciding whether or not a comparability graph has a compact compatible or weakly compatible topology and in the case of graphs with small cycles, hence in the case of trees, we give a characterization.