A Survey and Study of Planar Antennas for Pico-Satellites

Works on pico-satellites have gained momentum recently, especially those that consider pico-satellites as part of a much larger constellation or swarm. This feature allows pico-satellites to provide high temporal resolution of observational data and redundancy. In particular, it reduces the need for satellite-to-ground communications and, hence, helps save energy and allows the execution of distributed processing algorithms on the satellites themselves. Consequently, satellite-to-satellite or cross-link communication is critical. To realize these advantages, the cross-link antenna employed on pico-satellites must meet many criteria, namely, small size, lightweight, low-power consumption, high gain, wide bandwidth, circular polarization, and beam steerability. To date, no works have examined the suitability of existing planar antenna designs for the use on pico-satellites. To this end, this paper contributes to the literature by focusing on microstrip patch and slot antennas that have the ability to achieve high gain, beam steering, and wide bandwidth. This paper reviews 66 planar antenna designs, which includes 38-patch and 28-slot antennas. In addition, we provide an extensive qualitative comparison of these antennas in terms of their mass, size, gain, beam steerability, type of polarization, operating frequency band, and return loss. In addition, we have evaluated three antenna designs that best address the pico-satellite challenges on a common platform. We find that the asymmetric E-shaped patch antenna design is the most suitable for the use on 2U CubeSats. This is because of its small size (34 × 13 mm2) and high gain (7.3 dB). In addition, the E-shaped patch antenna yields a wide -10-dB bandwidth of 2300 MHz and a small return loss of -15.2 dB.

[1]  John L. Volakis,et al.  Radiation by cavity-backed antennas on a circular cylinder , 1994 .

[2]  A. Sanchez-Juarez,et al.  Properties of fluorine-doped ZnO deposited onto glass by spray pyrolysis , 1998 .

[3]  Tatsuo Itoh,et al.  Retrodirective arrays for wireless communications , 2002 .

[4]  K. Sarabandi,et al.  Design and Modeling of Patch Antenna Printed on Magneto-Dielectric Embedded-Circuit Metasubstrate , 2007, IEEE Transactions on Antennas and Propagation.

[5]  Indrasen Singh,et al.  Micro strip Patch Antenna and its Applications : a Survey , 2011 .

[6]  E. J. Wilkinson An N-Way Hybrid Power Divider , 1960 .

[7]  M. Piket-May,et al.  Wide-band slot antennas with CPW feed lines: hybrid and log-periodic designs , 2004, IEEE Transactions on Antennas and Propagation.

[8]  Clive Parini,et al.  Antennas for Global Navigation Satellite Systems: Chen/Antennas for Global Navigation Satellite Systems , 2012 .

[9]  A. Temme,et al.  Miniaturization of Patch Antennas Using a Metamaterial-Inspired Technique , 2012, IEEE Transactions on Antennas and Propagation.

[10]  Markku Kivikoski,et al.  New slot configurations for dual‐band planar inverted‐F antenna , 2001 .

[11]  Rainer Sandau,et al.  Status and trends of small satellite missions for Earth observation , 2010 .

[12]  K.M.K.H. Leong,et al.  Recent advances in retrodirective system technology , 2006, 2006 IEEE Radio and Wireless Symposium.

[13]  R.Y. Miyamoto,et al.  Antennas for distributed nanosatellite networks , 2005, IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, 2005..

[14]  Joseph W. Haus,et al.  Photonic Band Gap Structures , 2004 .

[15]  N. Behdad,et al.  Bandwidth enhancement and further size reduction of a class of miniaturized slot antennas , 2004, IEEE Transactions on Antennas and Propagation.

[16]  H. Yang,et al.  Surface waves of printed antennas on planar artificial periodic dielectric structures , 2001 .

[17]  K. Sarabandi,et al.  Design of miniaturized slot antennas , 2001, IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229).

[18]  V. Fusco,et al.  A Novel Quad-Polarization Agile Patch Antenna , 2009, IEEE Transactions on Antennas and Propagation.

[19]  Aliou Diallo,et al.  Efficient miniaturization technique for wire patch antennas , 2012 .

[20]  Ke Wu,et al.  Half Mode Substrate Integrated Waveguide (HMSIW) 3-dB Coupler , 2007, IEEE Microwave and Wireless Components Letters.

[21]  Kamal Sarabandi,et al.  Miniaturized folded-slot: an approach to increase the bandwidth and efficiency of miniaturized slot antennas , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[22]  Sudhir Shrestha,et al.  Flexible Microstrip Antenna for Skin Contact Application , 2012 .

[23]  M. J. Vaughan,et al.  Improvement of microstrip patch antenna radiation patterns , 1994 .

[24]  Mario Sorolla,et al.  Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates , 1999 .

[25]  Kin‐Lu Wong,et al.  Printed ring slot antenna for circular polarization , 2002 .

[26]  S. Gao,et al.  Polarization-agile antennas , 2006, IEEE Antennas and Propagation Magazine.

[27]  Klaus Schilling Earth observation by distributed networks of small satellites , 2009, International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering 2009.

[28]  Jan King,et al.  Nanosat Ka-Band Communications - A Paradigm Shift in Small Satellite Data Throughput , 2012 .

[29]  F. Bilotti,et al.  Design of Miniaturized Metamaterial Patch Antennas With $\mu$-Negative Loading , 2008, IEEE Transactions on Antennas and Propagation.

[30]  Ramon Martinez Rodriguez-Osorio,et al.  A hands-on education project: antenna design for inter-CubeSat communications , 2012 .

[31]  Jordi Puig-Suari,et al.  CubeSat: A New Generation of Picosatellite for Education and Industry Low-Cost Space Experimentation , 2000 .

[32]  Lawrence J. DeLucas,et al.  International space station , 1996 .

[33]  H. Iwasaki A circularly polarized small-size microstrip antenna with a cross slot , 1996 .

[34]  M. J. Bentum,et al.  Inter-satellite links for cubesats , 2013, 2013 IEEE Aerospace Conference.

[35]  D. Sievenpiper,et al.  Low-profile cavity-backed crossed-slot antenna with a single-probe feed designed for 2.34-GHz satellite radio applications , 2004, IEEE Transactions on Antennas and Propagation.

[36]  H. Oraizi,et al.  Design and optimization of broadband asymmetrical multisection wilkinson power divider , 2006, IEEE Transactions on Microwave Theory and Techniques.

[37]  M. H. Neshati,et al.  Development of a Low-Profile Circularly Polarized Cavity-Backed Antenna Using HMSIW Technique , 2013, IEEE Transactions on Antennas and Propagation.

[38]  Leonardo Reyneri,et al.  PiCPoT: a small satellite with educational goals , 2007 .

[39]  Qing-Xin Chu,et al.  HIGH-GAIN SLOT ANTENNA WITH PARASITIC PATCH AND WINDOWED METALLIC SUPERSTRATE , 2010 .

[40]  Jin-Sen Chen Dual-frequency annular-ring slot antennas fed by CPW feed and microstrip line feed , 2005, IEEE Transactions on Antennas and Propagation.

[41]  Patrick W. Fink,et al.  Development of Low-profile Antennas for CubeSats , 2014 .

[42]  N. Behdad,et al.  Size reduction of cavity-backed slot antennas , 2006, IEEE Transactions on Antennas and Propagation.

[43]  Kin-Fai Tong,et al.  New Proximity Coupled Feeding Method for Reconfigurable Circularly Polarized Microstrip Ring Antennas , 2008, IEEE Transactions on Antennas and Propagation.

[44]  Y. Lo,et al.  An Improved Theory for Microstrip Antennas and Applications. Part I. , 1979 .

[45]  Kwai-Man Luk,et al.  Study of a small wide-band patch antenna with double shorting walls , 2004 .

[46]  Bernd Dachwald,et al.  Flight results of the COMPASS-1 picosatellite mission , 2009 .

[47]  Jyh-Ching Juang,et al.  Design and evaluation of the attitude control system of the PHOENIX CubeSat , 2013, 2013 CACS International Automatic Control Conference (CACS).

[48]  Janise McNair,et al.  Enhancing small satellite communication through effective antenna system design , 2010, 2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE.

[49]  B. Ghosh,et al.  Miniaturization of Slot Antennas Using Wire Loading , 2013, IEEE Antennas and Wireless Propagation Letters.

[50]  Tatsuo Itoh,et al.  Aperture-coupled patch antenna on UC-PBG substrate , 1999 .

[51]  Georgios Mantzouris,et al.  MICRO AND PICO SATELLITES IN MARITIME SECURITY OPERATIONS , 2012 .

[52]  J. Row,et al.  The design of a squarer-ring slot antenna for circular polarization , 2005, IEEE Transactions on Antennas and Propagation.

[53]  N. Engheta,et al.  Subwavelength, Compact, Resonant Patch Antennas Loaded With Metamaterials , 2007, IEEE Transactions on Antennas and Propagation.

[54]  Kwai-Man Luk,et al.  Bandwidth enhancement technique for quarter-wave patch antennas , 2003 .

[55]  Qing-Xin Chu,et al.  CPW-Fed Square Slot Antenna with Lightening-Shaped Feedline for Broadband Circularly Polarized Radiation , 2010 .

[56]  A. Erentok,et al.  Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications , 2005, IEEE Transactions on Antennas and Propagation.

[57]  J. Vardaxoglou,et al.  Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas , 2005, IEEE Transactions on Antennas and Propagation.

[58]  M. A. Stuchly,et al.  Circularly polarised patch antenna with periodic structure , 2002 .

[59]  Vincent Fusco,et al.  THEORY AND DESIGN OF A TUNABLE QUASI-LUMPED QUADRATURE COUPLER , 2009 .

[60]  W. Scanlon,et al.  Antennas for Over-Body-Surface Communication at 2.45 GHz , 2009, IEEE Transactions on Antennas and Propagation.

[61]  Aaron T. Ohta,et al.  Self-Steering Antenna Arrays for Distributed Picosatellite Networks , 2003 .

[62]  O. Dumbrajs,et al.  Eigenvalues and Ohmic Losses in Coaxial Gyrotron Cavity , 2006, IEEE Transactions on Plasma Science.

[63]  Hossein Malekpoor,et al.  Miniaturised asymmetric E-shaped microstrip patch antenna with folded-patch feed , 2013 .

[64]  Lee Kai Fong,et al.  On the Use of Shorting Pins in the Design of Microstrip Patch Antennas , 2004 .

[65]  Tatsuo Itoh,et al.  A novel approach for gain and bandwidth enhancement of patch antennas , 1998, Proceedings RAWCON 98. 1998 IEEE Radio and Wireless Conference (Cat. No.98EX194).

[66]  Adel M. Alimi,et al.  A multi objective particles swarm optimization algorithm for solving the routing pico-satellites problem , 2012, 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[67]  Jeen-Sheen Row,et al.  Four‐element microstrip array with polarization diversity , 2013 .

[68]  Jianfeng Wang,et al.  Zigbee light link and its applicationss , 2013, IEEE Wireless Communications.

[69]  M. Polivka,et al.  A Novel Microstrip Patch Antenna Miniaturization Technique: A Meanderly Folded Shorted-Patch Antenna , 2008, 2008 14th Conference on Microwave Techniques.

[70]  Craig Underwood,et al.  Science Mission Scenarios using “Palmsat” Picosatellite Technologies , 2004 .

[71]  Henry R. Hertzfeld,et al.  Cubesats: Cost-effective science and technology platforms for emerging and developing nations , 2011 .

[72]  K. Sarabandi,et al.  Bandwidth Enhancement of Miniaturized Slot Antennas Using Folded, Complementary, and Self-Complementary Realizations , 2007, IEEE Transactions on Antennas and Propagation.

[73]  Jeen-Sheen Row,et al.  Frequency reconfigurable circularly polarized slot antennas with wide tuning range , 2011 .

[74]  J. Lange Interdigitated Stripline Quadrature Hybrid (Correspondence) , 1969 .

[75]  Jordi Puig-Suari,et al.  CubeSat: The Development and Launch Support Infrastructure for Eighteen Different Satellite Customers on One Launch , 2001 .

[76]  Stefano Pisa,et al.  High-Gain S-band Patch Antenna System for Earth-Observation CubeSat Satellites , 2015, IEEE Antennas and Wireless Propagation Letters.

[77]  Hector Bedon,et al.  Preliminary internetworking simulation of the QB50 cubesat constellation , 2010, 2010 IEEE Latin-American Conference on Communications.

[78]  P R Stauffer,et al.  Performance evaluation of a conformal thermal monitoring sheet sensor array for measurement of surface temperature distributions during superficial hyperthermia treatments , 2008, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[79]  Jeen-Sheen Row,et al.  Polarization-Diversity Ring Slot Antenna With Frequency Agility , 2012, IEEE Transactions on Antennas and Propagation.

[80]  Wei-Ping Ding,et al.  Broadband Circularly Polarized Microstrip Antenna Array Using Sequentially Rotated Technique , 2011, IEEE Antennas and Wireless Propagation Letters.

[81]  Tatsuo Itoh,et al.  Moving forward in retrodirective antenna arrays , 2003 .

[82]  Abdolmehdi Dadgarpour,et al.  COMPACT M-SLOT FOLDED PATCH ANTENNA FOR WLAN , 2008 .

[83]  Achmad Munir,et al.  Microstrip patch antenna miniaturization using artificial magnetic conductor , 2011, 2011 6th International Conference on Telecommunication Systems, Services, and Applications (TSSA).

[84]  Xian-Chang Lin,et al.  A Dual-Band CPW-Fed Inductive Slot-Monopole Hybrid Antenna , 2008, IEEE Transactions on Antennas and Propagation.

[85]  L. Boccia,et al.  Antennas for Modern Small Satellites , 2009, IEEE Antennas and Propagation Magazine.

[86]  Rainer Sandau,et al.  Potential for advancements in remote sensing using small satellites , 2008 .

[87]  Antonije R. Djordjevic,et al.  Improving radiation pattern of microstrip antennas , 2006, 2006 First European Conference on Antennas and Propagation.

[88]  Giuseppe Di Massa,et al.  Shorted annular patch antenna , 1995 .

[89]  Hang Wong,et al.  Study of small wideband folded-patch-feed antennas , 2007 .

[90]  Hossein Malekpoor,et al.  Enhanced Bandwidth of Shorted Patch Antennas Using Folded-Patch Techniques , 2013, IEEE Antennas and Wireless Propagation Letters.