A Posteriori Error Estimates of Lowest Order Raviart-Thomas Mixed Finite Element Methods for Bilinear Optimal Control Problems

An inverse geometric problem for two-dimensional Helmholtz-type equations arising in corrosion detection is considered. This problem involves determining an unknown corroded portion of the boundary of a two-dimensional domain and possibly its surface heat transfer (impedance) Robin coefficient from one or two pairs of boundary Cauchy data (boundary temperature and heat flux), and is solved numerically using the meshless method of fundamental solutions. A nonlinear unconstrained minimisation of the objective function is regularised when noise is added into the input boundary data. The stability of the numerical results is investigated for several test examples, with respect to noise in the input data and various values of the regularisation parameters.

[1]  Mohamed Jaoua,et al.  Identification of Robin coefficients by the means of boundary measurements , 1999 .

[2]  Roland Becker,et al.  Optimal control of the convection-diffusion equation using stabilized finite element methods , 2007, Numerische Mathematik.

[3]  Eva Sincich,et al.  Stability for the Determination of Unknown Boundary and Impedance with a Robin Boundary Condition , 2010, SIAM J. Math. Anal..

[4]  V. Bacchelli,et al.  Uniqueness for the determination of unknown boundary and impedance with the homogeneous Robin condition , 2008 .

[5]  Fioralba Cakoni,et al.  Integral equations for shape and impedance reconstruction in corrosion detection , 2010 .

[6]  L. Hou,et al.  FINITE-DIMENSIONAL APPROXIMATION OFA CLASS OFCONSTRAINED NONLINEAR OPTIMAL CONTROL PROBLEMS , 1996 .

[7]  W. Rundell Recovering an obstacle and its impedance from Cauchy data , 2008 .

[8]  Pedro Serranho,et al.  A hybrid method for inverse scattering for shape and impedance , 2006 .

[9]  Rainer Kress,et al.  Inverse scattering for surface impedance from phase-less far field data , 2011, J. Comput. Phys..

[10]  Ningning Yan,et al.  Finite element methods for optimal control problems governed by integral equations and integro-differential equations , 2005, Numerische Mathematik.

[11]  G. Inglese,et al.  An inverse problem in corrosion detection , 1997 .

[12]  Andreas Karageorghis,et al.  Regularized MFS-Based Boundary Identification in Two-Dimensional Helmholtz-Type Equations , 2009 .

[13]  Yanping Chen,et al.  Error estimates for parabolic optimal control problem by fully discrete mixed finite element methods , 2010 .

[14]  Yanping Chen,et al.  A posteriori error estimates for hp finite element solutions of convex optimal control problems , 2011, J. Comput. Appl. Math..

[15]  J. D. Lavers,et al.  An evaluation of the direct boundary element method and the method of fundamental solutions , 1989 .

[16]  Victor Isakov,et al.  Inverse obstacle problems , 2009 .

[17]  Ningning Yan,et al.  A posteriori error estimates for control problems governed by nonlinear elliptic equations , 2003 .

[18]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[19]  Fredi Tröltzsch,et al.  NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS FOR OPTIMIZATION PROBLEMS IN FUNCTION SPACES AND APPLICATIONS TO CONTROL THEORY , 2003 .

[20]  N. S. Mera,et al.  A three-dimensional boundary determination problem in potential corrosion damage , 2005 .

[21]  Fioralba Cakoni,et al.  Integral equations for inverse problems in corrosion detection from partial Cauchy data , 2007 .

[22]  Daniel Lesnic,et al.  A Boundary Element Regularization Method for the Boundary Determination in Potential Corrosion Damage , 2002 .

[23]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[24]  Wenbin Liu,et al.  A Posteriori Error Estimates for Distributed Convex Optimal Control Problems , 2001, Adv. Comput. Math..

[25]  Carsten Carstensen,et al.  A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..

[26]  L. Marin Numerical boundary identification for Helmholtz-type equations , 2006 .

[27]  Yanping Chen,et al.  L∞-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations , 2009 .

[28]  Y. C. Hon,et al.  A computational method for inverse free boundary determination problem , 2008 .

[29]  Liviu Marin,et al.  Boundary reconstruction in two-dimensional steady state anisotropic heat conduction using a regularized meshless method , 2010 .

[30]  Tao Feng,et al.  Adaptive finite element methods for the identification of distributed parameters in elliptic equation , 2008, Adv. Comput. Math..

[31]  C. Pagani,et al.  Identifiability problems of defects with the Robin condition , 2009 .

[32]  T. Geveci,et al.  On the approximation of the solution of an optimal control problem governed by an elliptic equation , 1979 .

[33]  Derek B. Ingham,et al.  The method of fundamental solutions for a biharmonic inverse boundary determination problem , 2008 .

[34]  Daniel Lesnic,et al.  Analysis of polygonal fins using the boundary element method , 2004 .

[35]  Fabio Milner,et al.  Mixed finite element methods for quasilinear second-order elliptic problems , 1985 .

[36]  R. Kress,et al.  Inverse scattering for shape and impedance , 2001 .

[37]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[38]  Richard S. Falk,et al.  Approximation of a class of optimal control problems with order of convergence estimates , 1973 .

[39]  D. Fasino,et al.  Linearization of a free boundary problem in corrosion detection , 2011 .

[40]  Yanping Chen,et al.  Error estimates of fully discrete mixed finite element methods for semilinear quadratic parabolic optimal control problem , 2010 .

[41]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[42]  Daniel Lesnic,et al.  The MFS for numerical boundary identification in two-dimensional harmonic problems , 2011 .

[43]  Lin He,et al.  Reconstruction of shapes and impedance functions using few far-field measurements , 2009, J. Comput. Phys..

[44]  Rolf Rannacher,et al.  Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic Concept , 2000, SIAM J. Control. Optim..

[45]  E. Miller,et al.  Efficient determination of multiple regularization parameters in a generalized L-curve framework , 2002 .

[46]  G. Inglese,et al.  Corrosion detection in conducting boundaries , 2004 .

[47]  Liviu Marin,et al.  Regularized method of fundamental solutions for boundary identification in two-dimensional isotropic linear elasticity , 2010 .

[48]  Daniel Lesnic,et al.  Inverse shape and surface heat transfer coefficient identification , 2012, J. Comput. Appl. Math..

[49]  Fredi Tröltzsch,et al.  Second-Order Necessary and Sufficient Optimality Conditions for Optimization Problems and Applications to Control Theory , 2002, SIAM J. Optim..

[50]  L. Yan,et al.  Reconstruction of part of a boundary for the Laplace equation by using a regularized method of fundamental solutions , 2009 .

[51]  Liviu Marin Boundary Reconstruction in Two-Dimensional Functionally Graded Materials Using a Regularized MFS , 2009 .

[52]  Ruo Li,et al.  Adaptive Finite Element Approximation for Distributed Elliptic Optimal Control Problems , 2002, SIAM J. Control. Optim..

[53]  Yanping Chen,et al.  Superconvergence of mixed finite element methods for optimal control problems , 2008, Math. Comput..

[54]  End Semester Me Finite element methods , 2018, Graduate Studies in Mathematics.

[55]  S. Chandler-Wilde,et al.  A high–wavenumber boundary–element method for an acoustic scattering problem , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[56]  D. Lesnic,et al.  A survey of applications of the MFS to inverse problems , 2011 .