Porous silicon microcarriers for extended release of metformin: Design, biological evaluation and 3D kinetics modeling

[1]  S. Rosales-Mendoza,et al.  Gelatin-based porous silicon hydrogel composites for the controlled release of tramadol , 2018, European Polymer Journal.

[2]  Arvin Haj‐Mirzaian,et al.  Anti-inflammatory effects of Metformin improve the neuropathic pain and locomotor activity in spinal cord injured rats: introduction of an alternative therapy , 2018, Spinal Cord.

[3]  M. Darder,et al.  Intercalation of metformin into montmorillonite. , 2018, Dalton transactions.

[4]  E. Pohjalainen,et al.  Electrochemically anodized porous silicon: Towards simple and affordable anode material for Li-ion batteries , 2017, Scientific Reports.

[5]  Ester Segal,et al.  Prolonged controlled delivery of nerve growth factor using porous silicon nanostructures , 2017, Journal of controlled release : official journal of the Controlled Release Society.

[6]  N. Morimoto,et al.  SiO2 and TiO2 nanoparticles synergistically trigger macrophage inflammatory responses , 2017, Particle and Fibre Toxicology.

[7]  A. L. Nikolaev,et al.  Antimicrobial Effect of Biocompatible Silicon Nanoparticles Activated Using Therapeutic Ultrasound. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[8]  R. Ocampo-Pérez,et al.  Single and competitive adsorption of Cd(II) and Pb(II) ions from aqueous solutions onto industrial chili seeds (Capsicum annuum) waste , 2017 .

[9]  Ichiro Tokubuchi,et al.  Beneficial effects of metformin on energy metabolism and visceral fat volume through a possible mechanism of fatty acid oxidation in human subjects and rats , 2017, PloS one.

[10]  K. Cychosz,et al.  Recent advances in the textural characterization of hierarchically structured nanoporous materials. , 2017, Chemical Society reviews.

[11]  M. Ferrari,et al.  Post-nano strategies for drug delivery: Multistage porous silicon microvectors. , 2017, Journal of materials chemistry. B.

[12]  P. Amin,et al.  Continuous melt granulation to develop high drug loaded sustained release tablet of Metformin HCl , 2016, Asian journal of pharmaceutical sciences.

[13]  S. Bhatia,et al.  Porous silicon-graphene oxide core-shell nanoparticles for targeted delivery of siRNA to the injured brain. , 2016, Nanoscale horizons.

[14]  Jarno Salonen,et al.  In vitro and in vivo assessment of heart-homing porous silicon nanoparticles. , 2016, Biomaterials.

[15]  Leigh T. Canham,et al.  Stain Etched Nanostructured Porous Silicon: The Role of Morphology on Antibacterial Drug Loading and Release , 2016, Silicon.

[16]  K. Järvinen,et al.  Cytotoxicity assessment of porous silicon microparticles for ocular drug delivery. , 2016, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[17]  Steven J P McInnes,et al.  Controlled Delivery of Levothyroxine Using Porous Silicon as a Drug Nanocontainer , 2016 .

[18]  S. Chakraborty,et al.  Gastroretentive extended release of metformin from methacrylamide-g-gellan and tamarind seed gum composite matrix. , 2016, Carbohydrate polymers.

[19]  A. Nayak,et al.  Swelling and drug release behavior of metformin HCl-loaded tamarind seed polysaccharide-alginate beads. , 2016, International journal of biological macromolecules.

[20]  Martin J. Sweetman,et al.  Towards a subcutaneous optical biosensor based on thermally hydrocarbonised porous silicon. , 2016, Biomaterials.

[21]  H. Santos,et al.  Smart Porous Silicon Nanoparticles with Polymeric Coatings for Sequential Combination Therapy. , 2015, Molecular pharmaceutics.

[22]  Steven J P McInnes,et al.  A novel pressed porous silicon-polycaprolactone composite as a dual-purpose implant for the delivery of cells and drugs to the eye. , 2015, Experimental eye research.

[23]  Molly M. Stevens,et al.  Mapping Local Cytosolic Enzymatic Activity in Human Esophageal Mucosa with Porous Silicon Nanoneedles , 2015, Advanced materials.

[24]  J. P. Olivier,et al.  Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) , 2015 .

[25]  J. Leppänen,et al.  Systematic in vitro and in vivo study on porous silicon to improve the oral bioavailability of celecoxib. , 2015, Biomaterials.

[26]  Nicolas H Voelcker,et al.  Surface engineering of porous silicon to optimise therapeutic antibody loading and release. , 2015, Journal of materials chemistry. B.

[27]  H. Santos,et al.  Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy. , 2015, Acta biomaterialia.

[28]  Z. Murthy,et al.  Controlled delivery of acyclovir from porous silicon micro- and nanoparticles , 2015 .

[29]  H. Santos,et al.  Improved stability and biocompatibility of nanostructured silicon drug carrier for intravenous administration. , 2015, Acta biomaterialia.

[30]  W. Freeman,et al.  Surface engineering of porous silicon microparticles for intravitreal sustained delivery of rapamycin. , 2015, Investigative ophthalmology & visual science.

[31]  H. Santos,et al.  Functionalization of alkyne-terminated thermally hydrocarbonized porous silicon nanoparticles with targeting peptides and antifouling polymers: effect on the human plasma protein adsorption. , 2015, ACS applied materials & interfaces.

[32]  H. Santos,et al.  Surface chemistry dependent immunostimulative potential of porous silicon nanoplatforms. , 2014, Biomaterials.

[33]  M. Çetin,et al.  Chitosan-poly (lactide-co-glycolide) (CS-PLGA) nanoparticles containing metformin HCl: preparation and in vitro evaluation. , 2014, Pakistan journal of pharmaceutical sciences.

[34]  Florian Talkenberg,et al.  Nanoparticles prepared from porous silicon nanowires for bio-imaging and sonodynamic therapy , 2014, Nanoscale Research Letters.

[35]  Mónica P. A. Ferreira,et al.  In vivo biocompatibility of porous silicon biomaterials for drug delivery to the heart. , 2014, Biomaterials.

[36]  L. Capitán-Vallvey,et al.  Monitoring of degradation of porous silicon photonic crystals using digital photography , 2014, Nanoscale Research Letters.

[37]  H. Santos,et al.  In vivo evaluation of porous silicon and porous silicon solid lipid nanocomposites for passive targeting and imaging. , 2014, Molecular pharmaceutics.

[38]  Jarno Salonen,et al.  Fabrication of a Multifunctional Nano‐in‐micro Drug Delivery Platform by Microfluidic Templated Encapsulation of Porous Silicon in Polymer Matrix , 2014, Advanced materials.

[39]  Sheng Han,et al.  Adsorption of tetracycline from aqueous solutions onto multi-walled carbon nanotubes with different oxygen contents , 2014, Scientific Reports.

[40]  G. Boss,et al.  Oxidation-Induced Trapping of Drugs in Porous Silicon Microparticles , 2014, Chemistry of materials : a publication of the American Chemical Society.

[41]  Qingmei Ye,et al.  Surfactant-mediated dissolution of metformin hydrochloride tablets: wetting effects versus ion pairs diffusivity. , 2014, Journal of pharmaceutical sciences.

[42]  E. Secret,et al.  Adhesion and proliferation of human mesenchymal stem cells from dental pulp on porous silicon scaffolds. , 2014, ACS applied materials & interfaces.

[43]  Jonathan M. Young,et al.  Mathematical modeling of drug release from nanostructured porous Si: combining carrier erosion and hindered drug diffusion for predicting release kinetics. , 2013, Acta biomaterialia.

[44]  G. Rena,et al.  Molecular mechanism of action of metformin: old or new insights? , 2013, Diabetologia.

[45]  E. Segal,et al.  Designing porous silicon-based microparticles as carriers for controlled delivery of mitoxantrone dihydrochloride , 2013 .

[46]  R. Manivannan,et al.  FORMULATION AND EVALUATION OF METFORMIN HYDROCHLORIDE SUSTAINED RELEASE TABLETS , 2013 .

[47]  R. Day,et al.  Metformin therapy in patients with chronic kidney disease , 2012, Diabetes, obesity & metabolism.

[48]  H. Santos,et al.  Nanostructured porous silicon materials: potential candidates for improving drug delivery. , 2012, Nanomedicine.

[49]  H. Santos,et al.  Amine modification of thermally carbonized porous silicon with silane coupling chemistry. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[50]  V. Timoshenko,et al.  Photoluminescent biocompatible silicon nanoparticles for cancer theranostic applications , 2012, Journal of biophotonics.

[51]  Y. Urade,et al.  Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. , 2011, Chemical reviews.

[52]  Garret A. FitzGerald,et al.  Prostaglandins and Inflammation , 2011, Arteriosclerosis, thrombosis, and vascular biology.

[53]  M. Bouchoucha,et al.  Metformin and digestive disorders. , 2011, Diabetes & metabolism.

[54]  H. Santos,et al.  Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. , 2011, Biomaterials.

[55]  F. Hong,et al.  Signaling pathway of inflammatory responses in the mouse liver caused by TiO2 nanoparticles. , 2011, Journal of biomedical materials research. Part A.

[56]  Catherine J. Murphy,et al.  Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? , 2010, Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology.

[57]  S. Muthu,et al.  FTIR, FT Raman and UV-Visible Spectroscopic Analysis on Metformin Hydrochloride , 2010 .

[58]  F. Wondisford,et al.  Metformin and Insulin Suppress Hepatic Gluconeogenesis through Phosphorylation of CREB Binding Protein , 2009, Cell.

[59]  C. Prestidge,et al.  Aqueous and thermal oxidation of porous silicon microparticles: implications on molecular interactions. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[60]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[61]  R. Srinivasan,et al.  Structure of metformin hydrochloride , 1989 .

[62]  Pentikäinen Pj Bioavailability of metformin. Comparison of solution, rapidly dissolving tablet, and three sustained release products. , 1986 .

[63]  P. Pentikäinen Bioavailability of metformin. Comparison of solution, rapidly dissolving tablet, and three sustained release products. , 1986, International journal of clinical pharmacology, therapy, and toxicology.

[64]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .