Thermal control coatings based on pigments modified with Al2O3 nanoparticles

[1]  M. Mikhailov,et al.  Optical properties and radiation stability of BaSO4 powders modified with ZrO2 nanoparticles , 2018, Radiation Physics and Chemistry.

[2]  M. Mikhailov,et al.  Optical properties of zinc oxide powders modified by nanoparticles ZrO2, Al2O3, TiO2, SiO2, CeO2 and Y2O3 with various concentrations , 2016 .

[3]  V. V. Shcherbina,et al.  Optical properties and radiation stability of TiO2 powders modified by Al2O3, ZrO2, SiO2, TiO2, ZnO, and MgO nanoparticles , 2015 .

[4]  M. Mikhailov,et al.  The degradation kinetics of the optical properties under proton irradiation for ZnO pigments modified by Al2O3 and Al2O3·CeO 2 nanopowders , 2012 .

[5]  Shiyu He,et al.  Proton Irradiation Effects on ZnO Pigments Modified by ZrO2 Nanopowders , 2011 .

[6]  A. Ng,et al.  ZnO nanostructures for optoelectronics: Material properties and device applications , 2010 .

[7]  J. Nowotny Titanium dioxide-based semiconductors for solar-driven environmentally friendly applications: impact of point defects on performance , 2008 .

[8]  J. Hu,et al.  Electronic structures of defects in ZnO: hybrid density functional studies. , 2008, The Journal of chemical physics.

[9]  Shiyu He,et al.  Optical degradation of silicone in ZnO/silicone white paint irradiated by <200 keV protons , 2008 .

[10]  I. Tanaka,et al.  Defect energetics in ZnO: A hybrid Hartree-Fock density functional study , 2008 .

[11]  Haowei Peng First-principles study of native defects in rutile TiO2 , 2008 .

[12]  Elizabeth C. Dickey,et al.  Prediction of high-temperature point defect formation in TiO2 from combined ab initio and thermodynamic calculations , 2007 .

[13]  E. Seebauer,et al.  Charged point defects in semiconductors , 2006 .

[14]  P. Erhart,et al.  First-principles study of intrinsic point defects in ZnO: Role of band structure, volume relaxation, and finite-size effects , 2006 .

[15]  V. N. Vasil’ev,et al.  DEGRADATION OF THERMAL CONTROL COATINGS UNDER INFLUENCE OF PROTON IRRADIATION , 2006 .

[16]  Shengbai Zhang,et al.  First-principles study of native defects in anatase Ti O 2 , 2006 .

[17]  M. Mikhailov,et al.  Photostability of reflecting coatings based on the ZrO2 powders doped with SrSiO3 , 2005 .

[18]  N. Nickel,et al.  Zinc oxide - a material for micro- and optoelectronic applications , 2005 .

[19]  M. Mikhailov,et al.  Optical properties and radiation stability of thermal control coatings based on doped zirconium dioxide powders , 2004 .

[20]  M. Donley,et al.  A multiple-scattering model analysis of zinc oxide pigment for spacecraft thermal control coatings , 2003 .

[21]  Yuming Sun,et al.  The electronic properties of native interstitials in ZnO , 2003 .

[22]  Faqiang Xu,et al.  The electronic structure and spectral properties of ZnO and its defects , 2003 .

[23]  A. Shluger,et al.  Structure and electrical levels of point defects in monoclinic zirconia , 2001 .

[24]  M. Jafelicci,et al.  Luminescent properties and lattice defects correlation on zinc oxide , 2001 .

[25]  Bixia Lin,et al.  Green luminescent center in undoped zinc oxide films deposited on silicon substrates , 2001 .

[26]  J. Chen,et al.  Theoretical study of F-type color center in rutile TiO2 , 2001 .

[27]  L. B. Fogdall,et al.  Effects of electrons, protons, and ultraviolet radiation on spacecraft thermal control materials , 1999 .

[28]  A. C. Tribble,et al.  UNITED STATES AND RUSSIAN THERMAL CONTROL COATING RESULTS IN LOW EARTH ORBIT , 1996 .

[29]  Yu.,et al.  Electronic structure of point defects in rutile TiO2. , 1995, Physical review. B, Condensed matter.

[30]  Emil W. Ciurczak,et al.  Handbook of Near-Infrared Analysis , 1992 .