Modeling and Adaptive Parameter Estimation for a Piezoelectric Cantilever Beam

This paper proposes a new adaptive estimation approach to online estimate the model parameters of a piezoelectric cantilever beam. The beam behavior is firstly modeled using partial differential equations (PDE) considering the Kelvin-Voigt damping. To facilitate the estimation of unknown model parameters, the Galerkin’s method is introduced to extract desired vibration modes by separating the time and space variables of the PDE. Then, considering two major vibration modes, the corresponding system model can be represented by a fourth-order ordinary differential equation (ODE). Finally, by using measured input and output information, a novel adaptive parameter estimation strategy is introduced to estimate the unknown parameters of the derived ODE model in real time. For the purpose of driving the parameter updating law, the estimation error is extracted by using an auxiliary variable and a time-varying gain. Consequently, the convergence of the parameter estimation error is rigorously proved based on the Lyapunov theory. Simulations and experimental results show the validity and practicability of the proposed estimation method.

[1]  Yanjun Liu,et al.  PDE Based Adaptive Control of Flexible Riser System With Input Backlash and State Constraints , 2022, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Choon Ki Ahn,et al.  Variable Cut-Off Frequency Observer-Based Positioning for Ball-Beam Systems Without Velocity and Current Feedback Considering Actuator Dynamics , 2020, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  M. Lepidi,et al.  Modal interactions in the nonlinear dynamics of a beam–cable–beam , 2019, Nonlinear Dynamics.

[4]  Mohd Shahrir Mohd Sani,et al.  Finite Element Modelling and Updating of Welded Thin-Walled Beam , 2018, International Journal of Automotive and Mechanical Engineering.

[5]  Jianqiang Ma,et al.  Auto-regressive moving average with exogenous excitation model based experimental identification and optimal discrete multi-poles shifting control of a flexible piezoelectric manipulator , 2018, Journal of Vibration and Control.

[6]  Ramon Costa-Castelló,et al.  Energy-efficient full-range oscillation analysis of parallel-plate electrostatically actuated MEMS resonators , 2017 .

[7]  Jintai Chung,et al.  Nonlinear modeling for dynamic analysis of a rotating cantilever beam , 2016 .

[8]  Guido Herrmann,et al.  Robust adaptive finite‐time parameter estimation and control for robotic systems , 2015 .

[9]  Vicente Feliu,et al.  A Fast Online Estimator of the Two Main Vibration Modes of Flexible Structures From Biased and Noisy Measurements , 2015, IEEE/ASME Transactions on Mechatronics.

[10]  Violaine Louvet,et al.  Parameter estimation in non-linear mixed effects models with SAEM algorithm: extension from ODE to PDE , 2014 .

[11]  Yuanqing Xia,et al.  Adaptive parameter identification of linear SISO systems with unknown time-delay , 2014, Syst. Control. Lett..

[12]  Andreas Antoniou,et al.  New Improved Recursive Least-Squares Adaptive-Filtering Algorithms , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[13]  Hu Ding,et al.  Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load , 2012 .

[14]  C. O. Paschereit,et al.  Advanced algorithms for gradient estimation in one- and two-parameter extremum seeking controllers , 2012 .

[15]  Murat Subasi,et al.  A procedure for the Galerkin method for a vibrating system , 2011, Comput. Math. Appl..

[16]  Ebrahim Esmailzadeh,et al.  Vibration suppression of rotating beams using time-varying internal tensile force , 2011 .

[17]  Orla Feely,et al.  Control of MEMS Vibration Modes With Pulsed Digital Oscillators: Part I—Theory , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  Siu-Tong Choi,et al.  Vibration and stability of an axially moving Rayleigh beam , 2010 .

[19]  E. Esmailzadeh,et al.  Non-linear vibration of variable speed rotating viscoelastic beams , 2010 .

[20]  Ni Qiao,et al.  Vibration and stability of an axially moving beam immersed in fluid , 2008 .

[21]  S. Nima Mahmoodi,et al.  Non-linear free vibrations of Kelvin-Voigt visco-elastic beams , 2007 .

[22]  Colin Atkinson,et al.  The frequency response of a rectangular cantilever plate vibrating in a viscous fluid , 2007 .

[23]  Ünal Dikmen,et al.  Modeling of seismic wave attenuation in soil structures using fractional derivative scheme , 2005 .

[24]  Xuemei Ren,et al.  Online identification of continuous-time systems with unknown time delay , 2005, IEEE Transactions on Automatic Control.

[25]  B. Guo,et al.  Stabilization and parameter estimation for an Euler-Bernoulli beam equation with uncertain harmonic disturbance under boundary output feedback control , 2005 .

[26]  Yaowen Yang,et al.  Integrated optimal design of vibration control system for smart beams using genetic algorithms , 2005 .

[27]  J. B. Yang,et al.  Dynamic modelling and control of a rotating Euler–Bernoulli beam , 2004 .

[28]  Alessandro Macchelli,et al.  Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach , 2004, SIAM J. Control. Optim..

[29]  C. Choy,et al.  Longitudinal and transverse piezoelectric coefficients of lead zirconate titanate/vinylidene fluoride-trifluoroethylene composites with different polarization states , 2002 .

[30]  A. Nayfeh,et al.  Linear and Nonlinear Structural Mechanics , 2002 .

[31]  Bao-Zhu Guo,et al.  Basis Property of a Rayleigh Beam with Boundary Stabilization , 2002 .

[32]  R. Scott,et al.  Dynamics of flexible beams undergoing overall motions , 1995 .

[33]  Hemanshu R. Pota,et al.  Multivariable transfer functions for a slewing piezoelectric laminate beam , 1992, [Proceedings 1992] IEEE International Conference on Systems Engineering.

[34]  Anuradha M. Annaswamy,et al.  Robust Adaptive Control , 1984, 1984 American Control Conference.

[35]  Guido Herrmann,et al.  Vehicle Engine Torque Estimation via Unknown Input Observer and Adaptive Parameter Estimation , 2018, IEEE Transactions on Vehicular Technology.