Computability with polynomial differential equations

In this paper, we show that there are initial value problems defined with polynomial ordinary differential equations that can simulate universal Turing machines in the presence of bounded noise. The polynomial ODE defining the IVP is explicitly obtained and the simulation is performed in real time.

[1]  Jerzy Mycka,et al.  Real recursive functions and their hierarchy , 2004, J. Complex..

[2]  S. Smale,et al.  Structurally Stable Systems are not Dense , 1966 .

[3]  Olivier Bournez,et al.  Elementarily computable functions over the real numbers and R-sub-recursive functions , 2005, Theor. Comput. Sci..

[4]  Michel Cosnard,et al.  Computability with Low-Dimensional Dynamical Systems , 1994, Theor. Comput. Sci..

[5]  Ker-I Ko,et al.  Computational Complexity of Real Functions , 1982, Theor. Comput. Sci..

[6]  M. Viana What’s new on lorenz strange attractors? , 2000 .

[7]  Roger W. Brockett,et al.  Smooth dynamical systems which realize arithmetical and logical operations , 1989 .

[8]  Ju. V. Matijasevic,et al.  ENUMERABLE SETS ARE DIOPHANTINE , 2003 .

[9]  Keijo Ruohonen An Effective Cauchy-Peano Existence Theorem for Unique Solutions , 1996, Int. J. Found. Comput. Sci..

[10]  P. Varaiya,et al.  What ' s Decidable about Hybrid Automata ? 1 , 1995 .

[11]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[12]  Cristopher Moore,et al.  An Analog Characterization of the Grzegorczyk Hierarchy , 2002, J. Complex..

[13]  John N. Tsitsiklis,et al.  A survey of computational complexity results in systems and control , 2000, Autom..

[14]  Olivier Bournez,et al.  Polynomial dierential equations compute all real computable functions , 2006 .

[15]  J. Milnor On the concept of attractor , 1985 .

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  Eduardo Sontag,et al.  Computational power of neural networks , 1995 .

[18]  Mike Casey,et al.  The Dynamics of Discrete-Time Computation, with Application to Recurrent Neural Networks and Finite State Machine Extraction , 1996, Neural Computation.

[19]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[20]  Cristopher Moore,et al.  Upper and Lower Bounds on Continuous-Time Computation , 2000, UMC.

[21]  Ning Zhong,et al.  The Wave Equation with Computable Initial Data Whose Unique Solution Is Nowhere Computable , 1996, Math. Log. Q..

[22]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.

[23]  Martin Fränzle,et al.  Analysis of Hybrid Systems: An Ounce of Realism Can Save an Infinity of States , 1999, CSL.

[24]  Hava T. Siegelmann,et al.  Neural networks and analog computation - beyond the Turing limit , 1999, Progress in theoretical computer science.

[25]  Olivier Bournez,et al.  The General Purpose Analog Computer and Computable Analysis are Two Equivalent Paradigms of Analog Computation , 2006, TAMC.

[26]  C. Fischer The differential analyzer , 2003 .

[27]  Oliver Aberth Computable Analysis and Differential Equations , 1970 .

[28]  D. Lebell The Differential Analyzer , 1952 .

[29]  Yurii Rogozhin,et al.  Small Universal Turing Machines , 1996, Theor. Comput. Sci..

[30]  Patricia Bouyer,et al.  Are Timed Automata Updatable? , 2000, CAV.

[31]  V. Arnold,et al.  Ordinary Differential Equations , 1973 .

[32]  S. Krantz Function theory of several complex variables , 1982 .

[33]  S. Lang Real and Functional Analysis , 1983 .

[34]  Michael Casey Correction to Proof That Recurrent Neural Networks Can Robustly Recognize Only Regular Languages , 1998, Neural Computation.

[35]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[36]  Oliver Aberth The failure in computable analysis of a classical existence theorem for differential equations , 1971 .

[37]  Daniel S. Graça,et al.  Computability via analog circuits , 2003 .

[38]  M. W. Shields An Introduction to Automata Theory , 1988 .

[39]  W. Tucker The Lorenz attractor exists , 1999 .

[40]  P. J. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[41]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[42]  Cristopher Moore,et al.  Closed-for Analytic Maps in One and Two Dimensions can Simulate Universal Turing Machines , 1999, Theor. Comput. Sci..

[43]  Pekka Orponen,et al.  On the Effect of Analog Noise in Discrete-Time Analog Computations , 1996, Neural Computation.

[44]  M. B. Pour-El,et al.  The wave equation with computable initial data such that its unique solution is not computable , 1981 .

[45]  Pravin Varaiya,et al.  What's decidable about hybrid automata? , 1995, STOC '95.

[46]  Jan H. van Schuppen,et al.  Observability of Piecewise-Affine Hybrid Systems , 2004, HSCC.

[47]  Michael F. Singer,et al.  A differentially algebraic elimination theorem with application to analog computability in the calculus of variations , 1985 .

[48]  Marian Boylan Pour-el,et al.  A computable ordinary differential equation which possesses no computable solution , 1979 .

[49]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .

[50]  José Félix Costa,et al.  Analog computers and recursive functions over the reals , 2003, J. Complex..

[51]  O. Hölder,et al.  Ueber die Eigenschaft der Gammafunction keiner algebraischen Differentialgleichung zu genügen , 1886 .

[52]  Cristopher Moore,et al.  Iteration, Inequalities, and Differentiability in Analog Computers , 2000, J. Complex..

[53]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[54]  Daniel S. Graça,et al.  Robust Simulations of Turing Machines with Analytic Maps and Flows , 2005, CiE.

[55]  Moore,et al.  Unpredictability and undecidability in dynamical systems. , 1990, Physical review letters.

[56]  Manuel Lameiras Campagnolo,et al.  The Complexity of Real Recursive Functions , 2002, UMC.

[57]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[58]  Leonard Lipshitz,et al.  Decision Problems for Differential Equations , 1989, J. Symb. Log..

[59]  Karl Svozil First International Conference on Unconventional Models of Computation UMC'98. An Unconventional Review , 1998 .

[60]  Marcelo Viana,et al.  Dynamical Systems: Moving into the Next Century , 2001 .

[61]  Cristopher Moore,et al.  Recursion Theory on the Reals and Continuous-Time Computation , 1996, Theor. Comput. Sci..

[62]  Barry Saltzman,et al.  Finite Amplitude Free Convection as an Initial Value Problem—I , 1962 .

[63]  Daniel Graça,et al.  The general purpose analog computer and recursive functionsover the reals , 2002 .

[64]  Thomas A. Henzinger,et al.  Robust Undecidability of Timed and Hybrid Systems , 2000, HSCC.

[65]  Lee A. Rubel,et al.  A survey of transcendentally transcendental functions , 1989 .

[66]  Michael Sipser,et al.  Introduction to the Theory of Computation , 1996, SIGA.

[67]  Klaus Weihrauch,et al.  Is wave propagation computable or can wave computers beat the turing machine? , 2002 .

[68]  Manuel Castellet,et al.  Mathematical Research Today and Tomorrow , 1992 .

[69]  Pascal Koiran A Family of Universal Recurrent Networks , 1996, Theor. Comput. Sci..

[70]  P. Odifreddi Classical recursion theory , 1989 .

[71]  Gerardo Lafferriere,et al.  A New Class of Decidable Hybrid Systems , 1999, HSCC.

[72]  Hava T. Siegelmann,et al.  On the Computational Power of Neural Nets , 1995, J. Comput. Syst. Sci..

[73]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[74]  Hava T. Siegelmann,et al.  A Theory of Complexity for Continuous Time Systems , 2002, J. Complex..

[75]  Daniel Silva Graça,et al.  Some recent developments on Shannon's General Purpose Analog Computer , 2004, Math. Log. Q..

[76]  Mark D. Bowles,et al.  U.S. Technological Enthusiasm and British Technological Skepticism in the Age of the Analog Brain , 1996, IEEE Ann. Hist. Comput..

[77]  Jürgen Hauck Ein Kriterium für die Konstruktive Lösbarkeit der Differentialgleichung y' = f(x, y) , 1985, Math. Log. Q..

[78]  Amir Pnueli,et al.  Reachability Analysis of Dynamical Systems Having Piecewise-Constant Derivatives , 1995, Theor. Comput. Sci..

[79]  Claude E. Shannon,et al.  Mathematical Theory of the Differential Analyzer , 1941 .

[80]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[81]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and an Introduction to Chaos , 2003 .

[82]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[83]  Peter Hertling,et al.  Feasible Real Random Access Machines , 1998, J. Complex..

[84]  Ahmed Bouajjani,et al.  Perturbed Turing machines and hybrid systems , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[85]  B. Engquist,et al.  Mathematics Unlimited: 2001 and Beyond , 2001 .

[86]  J. Ritt,et al.  Integration in finite terms , 1948 .

[87]  M. B. Pour-El,et al.  Abstract computability and its relation to the general purpose analog computer (some connections between logic, differential equations and analog computers) , 1974 .

[88]  Olivier Bournez,et al.  Real Recursive Functions and Real Extensions of Recursive Functions , 2004, MCU.

[89]  Michael S. Branicky,et al.  Universal Computation and Other Capabilities of Hybrid and Continuous Dynamical Systems , 1995, Theor. Comput. Sci..

[90]  C. Sparrow The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .

[91]  Begnaud Francis Hildebrand,et al.  Introduction to numerical analysis: 2nd edition , 1987 .

[92]  John L. Casti,et al.  Unconventional Models of Computation , 2002, Lecture Notes in Computer Science.

[93]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[94]  Manuel L. Campagnolo,et al.  Computational complexity of real valued recursive functions and analog circuits , 2001 .

[95]  A. Grzegorczyk On the definitions of computable real continuous functions , 1957 .

[96]  Joseph Sifakis,et al.  An Approach to the Description and Analysis of Hybrid Systems , 1992, Hybrid Systems.

[97]  L. Ahlfors Complex Analysis , 1979 .

[98]  D. Ruelle Chaotic evolution and strange attractors , 1989 .

[99]  Ecnica De Lisboa,et al.  The General Purpose Analog Computer and Recursive Functions Over the Reals , 2002 .

[100]  Vannevar Bush,et al.  The differential analyzer. A new machine for solving differential equations , 1931 .

[101]  L. Rubel,et al.  A differentially algebraic replacement theorem, and analog computability , 1987 .

[102]  Solomon Lefschetz Differential equations : geometric theory / Solomon Lefschetz , 1977 .

[103]  Ning Zhong,et al.  Computability, noncomputability and undecidability of maximal intervals of IVPs , 2009 .

[104]  Jerrold E. Marsden,et al.  Basic Complex Analysis , 1973 .

[105]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[106]  Ning Zhong,et al.  The ordinary differential equation defined by a computable function whose maximal interval of existence is non-computable , 2006 .

[107]  Hava T. Siegelmann,et al.  Computational Complexity for Continuous Time Dynamics , 1999 .