INSTRUMENTAL VARIABLE ESTIMATION IN A DATA RICH ENVIRONMENT

We consider estimation of parameters in a regression model with endogenous regressors. The endogenous regressors along with a large number of other endogenous variables are driven by a small number of unobservable exogenous common factors. We show that the estimated common factors can be used as instrumental variables and they are more efficient than the observed variables in our framework. Whereas standard optimal generalized method of moments estimator using a large number of instruments is biased and can be inconsistent, the factor instrumental variable estimator (FIV) is shown to be consistent and asymptotically normal, even if the number of instruments exceeds the sample size. Furthermore, FIV remains consistent even if the observed variables are invalid instruments as long as the unobserved common components are valid instruments. We also consider estimating panel data models in which all regressors are endogenous but share exogenous common factors. We show that valid instruments can be constructed from the endogenous regressors. Although single equation FIV requires no bias correction, the faster convergence rate of the panel estimator is such that a bias correction is necessary to obtain a zero-centered normal distribution.

[1]  Marine Carrasco,et al.  A regularization approach to the many instruments problem , 2012 .

[2]  George Kapetanios,et al.  Factor-GMM Estimation with Large Sets of Possibly Weak Instruments , 2010, Comput. Stat. Data Anal..

[3]  Serena Ng,et al.  Selecting Instrumental Variables in a Data Rich Environment , 2009 .

[4]  Guido M. Kuersteiner,et al.  Estimator Averaging for Two Stage Least Squares , 2008 .

[5]  Gang Hu,et al.  OLIVE: A Simple Method for Estimating Betas When Factors Are Measured with Error , 2010 .

[6]  B. M. Pötscher,et al.  CAN ONE ESTIMATE THE UNCONDITIONAL DISTRIBUTION OF POST-MODEL-SELECTION ESTIMATORS? , 2007, Econometric Theory.

[7]  M. Hallin,et al.  Determining the Number of Factors in the General Dynamic Factor Model , 2007 .

[8]  Jerry A. Hausman,et al.  IV Estimation with Heteroskedasticity and Many Instruments , 2007 .

[9]  J. Bai,et al.  Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions , 2006 .

[10]  Donald W. K. Andrews,et al.  Optimal Two‐Sided Invariant Similar Tests for Instrumental Variables Regression , 2006 .

[11]  P. Bühlmann Boosting for high-dimensional linear models , 2006 .

[12]  P. Bühlmann,et al.  BOOSTING: A STATISTICAL PERSPECTIVE , 2006 .

[13]  J. Stock,et al.  Forecasting with Many Predictors , 2006 .

[14]  Jean Boivin,et al.  DSGE Models in a Data-Rich Environment , 2006 .

[15]  Jörg Breitung,et al.  Dynamic factor models , 2006, SSRN Electronic Journal.

[16]  Bin Yu,et al.  Boosting with early stopping: Convergence and consistency , 2005, math/0508276.

[17]  Jeffrey M. Wooldridge,et al.  INSTRUMENTAL VARIABLES ESTIMATION WITH PANEL DATA , 2005, Econometric Theory.

[18]  Sydney C. Ludvigson,et al.  The Empirical Risk-Return Relation: A Factor Analysis Approach , 2005 .

[19]  L. Bauwens,et al.  Econometrics , 2005 .

[20]  R. Okui Shrinkage methods for instrumental variable estimation , 2004 .

[21]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[22]  Norman R. Swanson,et al.  Consistent Estimation with a Large Number of Weak Instruments , 2005 .

[23]  Lynda Khalaf,et al.  Are New Keynesian Phillips Curved Identified , 2004 .

[24]  Marcelo J. Moreira A Conditional Likelihood Ratio Test for Structural Models , 2003 .

[25]  P. Bühlmann,et al.  Boosting With the L2 Loss , 2003 .

[26]  Whitney K. Newey,et al.  Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators , 2003 .

[27]  J. Bai,et al.  Inferential Theory for Factor Models of Large Dimensions , 2003 .

[28]  J. Stock,et al.  Forecasting Using Principal Components From a Large Number of Predictors , 2002 .

[29]  A. Ma GMM estimation of the new Phillips curve , 2002 .

[30]  J. Hahn,et al.  Discontinuities of weak instrument limiting distributions , 2002 .

[31]  Jerry A. Hausman,et al.  Notes on bias in estimators for simultaneous equation models , 2002 .

[32]  Lucrezia Reichlin,et al.  Factor Models in Large Cross-Sections of Time Series , 2002 .

[33]  Carlo A. Favero,et al.  Large Datasets, Small Models and Monetary Policy in Europe , 2001 .

[34]  Stephen G. Donald,et al.  Choosing the Number of Instruments , 2001 .

[35]  Jean Boivin,et al.  Monetary Policy in a Data-Rich Environment , 2001 .

[36]  Donald W. K. Andrews,et al.  Consistent model and moment selection procedures for GMM estimation with application to dynamic panel data models , 2001 .

[37]  B. Yu,et al.  Boosting with the L 2-loss regression and classification , 2001 .

[38]  J. Bai,et al.  Determining the Number of Factors in Approximate Factor Models , 2000 .

[39]  J. Galí,et al.  Inflation Dynamics: A Structural Econometric Analysis , 1999 .

[40]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[41]  Paul A. Bekker,et al.  ALTERNATIVE APPROXIMATIONS TO THE DISTRIBUTIONS OF INSTRUMENTAL VARIABLE ESTIMATORS , 1994 .

[42]  J. Stock,et al.  Instrumental Variables Regression with Weak Instruments , 1994 .

[43]  C. Christ SIMULTANEOUS EQUATIONS ESTIMATION , 1994 .

[44]  Robert A. DelRossi Consider C , 1992 .

[45]  M. Arellano,et al.  Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations , 1991 .

[46]  Yoav Freund,et al.  Boosting a weak learning algorithm by majority , 1990, COLT '90.

[47]  Peter C. B. Phillips,et al.  Exact Small Sample Theory in the Simultaneous Equations Model , 1983 .

[48]  M. Rothschild,et al.  Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets , 1982 .

[49]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .

[50]  L. S. Jennings,et al.  Simultaneous equations estimation: Computational aspects , 1980 .

[51]  J. Hausman Specification tests in econometrics , 1978 .

[52]  Thomas J. Sargent,et al.  Business cycle modeling without pretending to have too much a priori economic theory , 1976 .

[53]  Takeshi Amemiya,et al.  ON THE USE OF PRINCIPAL COMPONENTS OF INDEPENDENT VARIABLES IN TWO-STAGE LEAST-SQUARES ESTIMATION* , 1966 .

[54]  T. Kloek,et al.  Simultaneous Equations Estimation Based on Principal Components of Predetermined Variables , 1960 .