Fluid integration of rotation and translation

Previous research has shown that rotation and orientation of items plays three major roles during collaboration: comprehension, coordination and communication. Based on these roles of orientation and advice from kinesiology research, we have designed the Rotate'N Translate (RNT) interaction mechanism, which provides integrated control of rotation and translation using only a single touch-point for input. We present an empirical evaluation comparing RNT to a common rotation mechanism that separates control of rotation and translation. Results of this study indicate RNT is more efficient than the separate mechanism and better supports the comprehension, coordination and communication roles of orientation.

[1]  George W. Fitzmaurice,et al.  The Rockin'Mouse: integral 3D manipulation on a plane , 1997, CHI.

[2]  Christopher Joseph Pal,et al.  A two-ball mouse affords three degrees of freedom , 1997, CHI Extended Abstracts.

[3]  Robert J. K. Jacob,et al.  Integrality and separability of input devices , 1994, TCHI.

[4]  Yanqing Wang,et al.  The structure of object transportation and orientation in human-computer interaction , 1998, CHI.

[5]  I.,et al.  Fitts' Law as a Research and Design Tool in Human-Computer Interaction , 1992, Hum. Comput. Interact..

[6]  Mark S. Hancock,et al.  Improving Menu Placement Strategies for Pen Input , 2004, Graphics Interface.

[7]  Meredith Ringel Morris,et al.  DiamondSpin: an extensible toolkit for around-the-table interaction , 2004, CHI.

[8]  Norbert A. Streitz,et al.  An interactive Landscape for Creativity and Innovation , 1999 .

[9]  Carsten Magerkurth,et al.  STARS - A Ubiquitous Computing Platform for Computer Augmented Tabletop Games , 2003 .

[10]  M. Sheelagh T. Carpendale,et al.  Territoriality in collaborative tabletop workspaces , 2004, CSCW.

[11]  John C. Tang Findings from Observational Studies of Collaborative Work , 1991, Int. J. Man Mach. Stud..

[12]  Ken Perlin,et al.  Pad: an alternative approach to the computer interface , 1993, SIGGRAPH.

[13]  Kent L. Beck,et al.  Extreme programming explained - embrace change , 1990 .

[14]  Meredith Ringel Morris,et al.  Release, relocate, reorient, resize: fluid techniques for document sharing on multi-user interactive tables , 2004, CHI EA '04.

[15]  Norbert A. Streitz,et al.  i-LAND: an interactive landscape for creativity and innovation , 1999, CHI '99.

[16]  W. Buxton,et al.  A study in two-handed input , 1986, CHI '86.

[17]  Richard Szeliski,et al.  The VideoMouse: a camera-based multi-degree-of-freedom input device , 1999, UIST '99.

[18]  Clifton Forlines,et al.  Sharing and building digital group histories , 2002, CSCW '02.

[19]  Darren Leigh,et al.  DiamondTouch: a multi-user touch technology , 2001, UIST '01.

[20]  Norbert A. Streitz,et al.  Connectables: dynamic coupling of displays for the flexible creation of shared workspaces , 2001, UIST '01.

[21]  M. Sheelagh T. Carpendale,et al.  Roles of Orientation in Tabletop Collaboration: Comprehension, Coordination and Communication , 2004, Computer Supported Cooperative Work (CSCW).

[22]  Abigail Sellen,et al.  A study in interactive 3-D rotation using 2-D control devices , 1988, SIGGRAPH.

[23]  William Buxton,et al.  Graspable user interfaces , 1996 .

[24]  Jun Rekimoto,et al.  Augmented surfaces: a spatially continuous work space for hybrid computing environments , 1999, CHI '99.

[25]  A. D. Manning,et al.  Understanding Comics: The Invisible Art , 1993 .

[26]  Mike Wu,et al.  Multi-finger and whole hand gestural interaction techniques for multi-user tabletop displays , 2003, UIST '03.

[27]  G. Darin Mitchell Orientation on tabletop displays , 2003 .