Seismic noise attenuation by means of an anisotropic non-linear diffusion filter

Noise attenuation is a major seismic data processing concern. In seismic data, noise can appear as random, coherent and/or impulsive. Recently, many different techniques, ranging from relatively simple processes to extremely complex ones, have been used for noise attenuation. Image filtering techniques are relatively new methods in seismic exploration. We introduced the anisotropic non-linear diffusion filter which is an effective way to de-noise images. Since a seismic section can be considered as an image of a two-variable function, we implemented the anisotropic non-linear diffusion filter to reduce both random and Gaussian noises. This filter is shown to be effective in removing noise while preserving edges and hence reducing resolution loss in seismic data. The anisotropic non-linear diffusion filter, with Tukey's function to guide the diffusivity, was applied to synthetic and real seismic data. The results show a signal-to-noise ratio increase with reflector continuity in addition to better recovery of reflector amplitudes even when dealing with complex subsurface geological structures.

[1]  Gijs C. Fehmers,et al.  Fast structural interpretation with structure-oriented filtering , 2002 .

[2]  G. Fehmers,et al.  Fast structural interpretation with structure-oriented filteringStructure-Oriented Filtering , 2003 .

[3]  Bjørn Ursin,et al.  IDENTIFICATION OF SEISMIC REFLECTIONS USING SINGULAR VALUE DECOMPOSITION , 1985 .

[4]  Wooil M. Moon,et al.  Adaptive Filtering of Random Noise in 2-D Geophysical Data , 1997 .

[5]  L. Canales Random Noise Reduction , 1984 .

[6]  Robert H. Tatham,et al.  Application of the tau-p transform (slant-stack) in processing seismic reflection data , 1983 .

[7]  Burkhard Buttkus Multichannel Filtering of Seismic Data , 2000 .

[8]  Wenkai Lu,et al.  Adaptive noise attenuation of seismic images based on singular value decomposition and texture direction detection , 2006 .

[9]  R. Tatham Multidimensional filtering of seismic data , 1984, Proceedings of the IEEE.

[10]  I. F. Jones,et al.  SIGNAL‐TO‐NOISE RATIO ENHANCEMENT IN MULTICHANNEL SEISMIC DATA VIA THE KARHUNEN‐LOÉVE TRANSFORM* , 1987 .

[11]  S. Freire,et al.  Eigenimage Processing of Seismic Sections , 1988 .

[12]  Kamel Baddari,et al.  Application of signal dependent rank-order mean filter to the removal of noise spikes from 2D electrical resistivity imaging data , 2009 .

[13]  Arthur B. Weglein,et al.  Multiple attenuation; an overview of recent advances and the road ahead (1999) , 1999 .

[14]  David C Hagen The application of principal components analysis to seismic data sets , 1982 .

[15]  Dave Hale Atomic Images - A Method For Meshing Digital Images , 2001, IMR.

[16]  Öz Yilmaz,et al.  Seismic data processing , 1987 .

[17]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[18]  Necati Gulunay,et al.  FXDECON and complex wiener prediction filter , 1986 .

[19]  S. Trickett F-xy eigenimage noise suppression , 2003 .

[20]  A. D. Bailey,et al.  A review of the two-dimensional transform and its use in seismic processing , 1983 .

[21]  A. A. Fitch Developments In Geophysical Exploration Methods — 6 A. A. Fitch (ed.), Elsevier, London, 1985 £38.OO , 1979 .

[22]  Kamel Baddari,et al.  Application of feedback connection artificial neural network to seismic data filtering , 2008, 0811.2743.

[23]  Kamal M. Al-Yahya,et al.  APPLICATION OF THE PARTIAL KARHUNEN‐LOÈVE TRANSFORM TO SUPPRESS RANDOM NOISE IN SEISMIC SECTIONS1 , 1991 .

[24]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Robert Babuska,et al.  A semi-supervised method to detect seismic random noise with fuzzy GK clustering , 2008 .