Quantum Representation of Affine Weyl Groups and Associated Quantum Curves

We study a quantum (non-commutative) representation of the affine Weyl group mainly of type E (1) 8 , where the representation is given by birational actions on two variables x, y with q-commutation relations. Using the tau variables, we also construct quantum “fundamental” polynomials F (x, y) which completely control the Weyl group actions. The geometric properties of the polynomials F (x, y) for the commutative case is lifted distinctively in the quantum case to certain singularity structures as the q-difference operators. This property is further utilized as the characterization of the quantum polynomials F (x, y). As an application, the quantum curve associated with topological strings proposed recently by the first named author is rederived by the Weyl group symmetry. The cases of type D (1) 5 , E (1) 6 , E (1) 7 are also discussed.

[1]  O. Lisovyy,et al.  Conformal field theory of Painlevé VI , 2012, 1207.0787.

[2]  A. Mironov,et al.  Nekrasov functions from exact Bohr–Sommerfeld periods: the case of SU(N) , 2009, 0911.2396.

[3]  Anatol N. Kirillov Dilogarithm identities , 1994 .

[4]  R. Kashaev,et al.  Matrix Models from Operators and Topological Strings, 2 , 2015, 1505.02243.

[5]  Topological Strings and Integrable Hierarchies , 2003, hep-th/0312085.

[6]  Taro Kimura,et al.  Twisted reduction of quiver W-algebras , 2019, 1905.03865.

[7]  Mikhail Bershtein,et al.  Quantum spectral problems and isomonodromic deformations , 2021 .

[8]  Min-xin Huang,et al.  Quantum geometry of del Pezzo surfaces in the Nekrasov-Shatashvili limit , 2015, Journal of High Energy Physics.

[9]  山田 泰彦,et al.  Exploring new structures and natural constructions in mathematical physics , 2011 .

[10]  Sung-Soo Kim,et al.  Tao Probing the End of the World , 2015, 1504.03672.

[11]  Yasuhiko Yamada,et al.  Study of $q$-Garnier system by Pad\'e method , 2016, 1601.01099.

[12]  M. Yamazaki,et al.  Lens Generalisation of τ-Functions for the Elliptic Discrete Painlevé Equation , 2018, International Mathematics Research Notices.

[13]  Teruhisa Tsuda Tropical Weyl Group Action via Point Configurations and τ-Functions of the q-Painlevé Equations , 2006 .

[14]  Santiago Codesido,et al.  Spectral Theory and Mirror Curves of Higher Genus , 2015, 1507.02096.

[15]  K. Takemura On q-Deformations of the Heun Equation , 2017, Symmetry, Integrability and Geometry: Methods and Applications.

[16]  G. Bonelli,et al.  Quantum curves and q-deformed Painlevé equations , 2017, Letters in Mathematical Physics.

[17]  O. Lisovyy,et al.  On Painlevé/gauge theory correspondence , 2016, 1612.06235.

[18]  P. Gavrylenko,et al.  Cluster integrable systems, q-Painlevé equations and their quantization , 2017, 1711.02063.

[19]  M. Noumi,et al.  The Elliptic Painlevé Lax Equation vs. van Diejen's 8-Coupling Elliptic Hamiltonian , 2019, 1903.09738.

[20]  Yasuhiro Ohta,et al.  Cubic Pencils and Painlevé Hamiltonians , 2004 .

[21]  Sanefumi Moriyama Spectral theories and topological strings on del Pezzo geometries , 2020, Journal of High Energy Physics.

[22]  Sanefumi Moriyama,et al.  Instanton effects in ABJM theory from Fermi gas approach , 2012, 1211.1251.

[23]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .

[24]  Jie Gu,et al.  Operators and higher genus mirror curves , 2016, 1609.00708.

[25]  Xin Wang,et al.  Quantum periods and spectra in dimer models and Calabi-Yau geometries , 2020, Journal of High Energy Physics.

[26]  Birational Weyl Group Action Arising from a Nilpotent Poisson Algebra , 2000, math/0012028.

[27]  H. Sakai,et al.  Rational Surfaces Associated with Affine Root Systems¶and Geometry of the Painlevé Equations , 2001 .

[28]  Sung-Soo Kim,et al.  5d En Seiberg-Witten curve via toric-like diagram , 2014, 1411.7903.

[29]  Yuji Tachikawa,et al.  Webs of five-branes and = 2 superconformal field theories , 2009, 0906.0359.

[30]  Sanefumi Moriyama,et al.  Non-perturbative effects and the refined topological string , 2013, 1306.1734.

[31]  A. Shchechkin,et al.  q-deformed Painlevé τ function and q-deformed conformal blocks , 2016, 1608.02566.

[32]  V. Pestun,et al.  Seiberg-Witten Geometry of Four-Dimensional $\mathcal N=2$ Quiver Gauge Theories , 2012, Symmetry, Integrability and Geometry: Methods and Applications.

[33]  Y. Yamada W(E 10 ) Symmetry, M-Theory and Painlev e Equations , 2002 .

[34]  Sanefumi Moriyama,et al.  Superconformal Chern-Simons theories from del Pezzo geometries , 2017, 1707.02420.

[35]  Sanefumi Moriyama,et al.  Instanton bound states in ABJM theory , 2013, 1301.5184.

[36]  J. Borwein,et al.  Affine Weyl groups , 2001 .

[37]  A. Ramani,et al.  Discrete Painlevé Equations , 2019 .

[38]  M. Mariño,et al.  Topological Strings from Quantum Mechanics , 2014, 1410.3382.

[39]  Y. Ohta,et al.  An affine Weyl group approach to the eight-parameter discrete Painlevé equation , 2001 .

[40]  Gen Kuroki Regularity of quantum τ-functions generated by quantum birational Weyl group actions , 2012, 1206.3419.

[41]  Sergey Fomin,et al.  The Laurent Phenomenon , 2002, Adv. Appl. Math..

[42]  Sanefumi Moriyama,et al.  Symmetry breaking in quantum curves and super Chern-Simons matrix models , 2018, Journal of High Energy Physics.

[43]  Miranda C. N. Cheng,et al.  Quantum geometry of refined topological strings , 2011, 1105.0630.

[44]  M. Mariño,et al.  Matrix Models from Operators and Topological Strings , 2015, 1502.02958.

[45]  M. Jimbo,et al.  CFT approach to the $q$-Painlev\'e VI equation , 2017, 1706.01940.

[46]  Min-xin Huang On gauge theory and topological string in Nekrasov-Shatashvili limit , 2012, 1205.3652.