An Equivalence Relation Between Morphological Dynamics and Persistent Homology in 1D

We state in this paper a strong relation existing between Mathematical Morphology and Morse Theory when we work with 1D \(\mathfrak {D}\)-Morse functions. Specifically, in Mathematical Morphology, a classic way to extract robust markers for segmentation purposes, is to use the dynamics. On the other hand, in Morse Theory, a well-known tool to simplify the Morse-Smale complexes representing the topological information of a \(\mathfrak {D}\)-Morse function is the persistence. We show that pairing by persistence is equivalent to pairing by dynamics.

[1]  Frank Shih,et al.  Introduction to Mathematical Morphology , 2009 .

[2]  Michel Grimaud,et al.  New measure of contrast: the dynamics , 1992, Optics & Photonics.

[3]  R. Forman A USER'S GUIDE TO DISCRETE MORSE THEORY , 2002 .

[4]  David Cohen-Steiner,et al.  Extending Persistence Using Poincaré and Lefschetz Duality , 2009, Found. Comput. Math..

[5]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Laurent Najman,et al.  Geodesic Saliency of Watershed Contours and Hierarchical Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[8]  M. Grimaud La geodesie numerique en morphologie mathematique. Application a la detection des microcalcifications en mammographie numerique , 1991 .

[9]  Leila De Floriani,et al.  Discrete Morse versus Watershed Decompositions of Tessellated Manifolds , 2013, ICIAP.

[10]  Pierre Soille,et al.  Mathematical Morphology and Its Applications to Image Processing , 1994, Computational Imaging and Vision.

[11]  Hugues Talbot,et al.  Mathematical Morphology: from theory to applications , 2013 .

[12]  Gilles Bertrand,et al.  Collapses and Watersheds in Pseudomanifolds of Arbitrary Dimension , 2014, Journal of Mathematical Imaging and Vision.

[13]  Gilles Bertrand,et al.  Watershed Cuts: Minimum Spanning Forests and the Drop of Water Principle , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Corinne Vachier Extraction de caractéristiques, segmentation d'image et morphologie mathématique , 1995 .

[15]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[16]  Laurent Najman,et al.  Watershed of a continuous function , 1994, Signal Process..

[17]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .

[18]  Leila De Floriani,et al.  Morphological Modeling of Terrains and Volume Data , 2014, SpringerBriefs in Computer Science.

[19]  Leila De Floriani,et al.  Computing a discrete Morse gradient from a watershed decomposition , 2016, Comput. Graph..