Robot Localization Using the Phase of Passive UHF-RFID Signals Under Uncertain Tag Coordinates

An indoor global localization problem for a mobile robot based on Radio Frequency IDentification (RFID) is considered. The localization system consists of a reader installed on the robot which measures the phase of UHF-RFID signals coming from a set of passive tags deployed on the ceiling of the environment. Assuming only an approximate information is available at the beginning on the position of the tags, this paper presents an algorithm, based on a Multi-Hypothesis Extended Kalman Filter, which improves the initial estimate on the tag coordinates while simultaneously localizing the robot. Simulative and experimental results are reported to illustrate the effectiveness of the proposed approach.

[1]  Wolfram Burgard,et al.  Mapping and localization with RFID technology , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[2]  Francesco Martinelli,et al.  A Robot Localization System Combining RSSI and Phase Shift in UHF-RFID Signals , 2015, IEEE Transactions on Control Systems Technology.

[3]  Francesco Martinelli,et al.  Mobile Robot Localization Using the Phase of Passive UHF RFID Signals , 2014, IEEE Transactions on Industrial Electronics.

[4]  Ju-Jang Lee,et al.  A Hierarchical Algorithm for Indoor Mobile Robot Localization Using RFID Sensor Fusion , 2011, IEEE Transactions on Industrial Electronics.

[5]  Gerald Cook,et al.  Mobile Robots: Navigation, Control and Remote Sensing , 2011 .

[6]  José A. Gallud,et al.  Tracking autonomous entities using rfid technology , 2009, IEEE Transactions on Consumer Electronics.

[7]  Javier González,et al.  Efficient probabilistic Range-Only SLAM , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Francesco Martinelli,et al.  Constrained and quantized Kalman filtering for an RFID robot localization problem , 2010, Auton. Robots.

[9]  K. Jaakkola,et al.  Phase-Based UHF RFID Tracking With Nonlinear Kalman Filtering and Smoothing , 2012, IEEE Sensors Journal.

[10]  V. Strassen Gaussian elimination is not optimal , 1969 .

[11]  Ananda Sanagavarapu Mohan,et al.  Novel Bridge-Loop Reader for Positioning With HF RFID Under Sparse Tag Grid , 2014, IEEE Transactions on Industrial Electronics.

[12]  Wenyan Wu,et al.  Efficient Object Localization Using Sparsely Distributed Passive RFID Tags , 2013, IEEE Transactions on Industrial Electronics.

[13]  Francesco Martinelli,et al.  A Passive UHF-RFID System for the Localization of an Indoor Autonomous Vehicle , 2012, IEEE Transactions on Industrial Electronics.

[14]  Samer S. Saab,et al.  A Standalone RFID Indoor Positioning System Using Passive Tags , 2011, IEEE Transactions on Industrial Electronics.

[15]  M. Matsumoto,et al.  RFID Indoor Positioning Based on Probabilistic RFID Map and Kalman Filtering , 2007 .

[16]  Peter I. Corke,et al.  Further Results with Localization and Mapping Using Range from Radio , 2005, FSR.

[17]  Jiun-Fu Chen,et al.  Simultaneous localization and mapping using a short-range passive RFID reader with sparse tags in large environments , 2010, 2010 IEEE Workshop on Advanced Robotics and its Social Impacts.

[18]  Brian L. F. Daku,et al.  Initial Position Estimation Using RFID Tags: A Least-Squares Approach , 2010, IEEE Transactions on Instrumentation and Measurement.

[19]  Sangdo Park,et al.  Self-Recognition of Vehicle Position Using UHF Passive RFID Tags , 2013, IEEE Transactions on Industrial Electronics.

[20]  Javier González,et al.  A pure probabilistic approach to range-only SLAM , 2008, 2008 IEEE International Conference on Robotics and Automation.

[21]  Andreas Zell,et al.  Fully autonomous trajectory estimation with long-range passive RFID , 2010, 2010 IEEE International Conference on Robotics and Automation.